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LOGARITHMIC FRACTIONAL SOBOLEV TRACE

INEQUALITIES

Young Ja Park

Abstract. Logarithmic fractional Sobolev trace inequalities are
derived as a generalization of the results in [6, 9].

1. Introduction

The classical Sobolev trace inequalities are written as:(∫
Rn
|f(x)|qdx

)1/q

≤ Ap,q

(∫
Rn+1
+

|∇u(x, y)|pdxdy

)1/p

(1.1)

with
1

q
=
n+ 1

np
− 1

n
,

where u is the extension of f to the upper half-space and Ap,q is a positive
constant independent of u. Many mathematicians have developed this
type of inequalities using various methods in different settings (see, for
example, [2, 3]). These inequalities of Sobolev type provide estimates of
lower order derivatives of the trace function f in terms of higher order
derivatives of u. Very recently this is generalized to nonhomogeneous
fractional Sobolev spaces W s,p(Rn) [6].

Logarithmic Sobolev trace inequalities capture the spirit of classical
Sobolev trace inequalities with the logarithm function replacing powers,
and they can be considered as limiting cases of Sobolev trace inequalities.
It was first investigated in [8]: for f ∈ S(Rn) with ‖f‖L2(Rn) = 1,∫

Rn
|f(x)|2 ln |f(x)|dx ≤ n

2
ln

(
An

∫
Rn+1
+

|∇u(x, y)|2dxdy

)
,(1.2)
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where u is an extension of f to the upper half-space that is continuous
in the closed upper half-space and at least once differentiable on the
open upper half-space, and An is a positive constant dependent only on
the dimension n. The logarithmic uncertainty principle was utilized to
derive the logarithmic inequality (1.2).

A generalization of logarithmic Sobolev trace inequalities (1.2) was
investigated in [9]: For any measurable function u satisfying ∇u ∈
Lp(Rn+1

+ ) and
‖f‖Lq(Rn) = 1

with u(x, 0) = f(x) in the sense of distribution, we have(∫
Rn
|f(x)|q ln |f(x)|dx

)
≤ n

p
ln

(
Ap

∫
Rn+1
+

|∇u(x, y)|pdxdy

)
(1.3)

for some absolute constant Ap under the conjugate condition

n+ 1

p
=
n− 1

q
+ 1.

This paper derives a logarithmic fractional Sobolev trace inequality
which is a generalization of the logarithmic trace inequality (1.3) and is
a limiting case of the fractional Sobolev trace inequalities discussed in
[6].

2. The main theorem and notations

The fractional Sobolev spaces W s,p(Rn) of functions with s ∈ R are
defined as

W s,p(Rn) :=
{
u ∈ S ′(Rn) : F−1n

(
(1 + |ξ|2)s/2û

)
∈ Lp(Rn)

}
,

where S ′(Rn) is the set of all tempered distributions on Rn and the
Fourier transform û = Fn(u) on Rn of the function u ∈ S(Rn) is defined
by

û(ξ) = Fn(u)(ξ) =
1

(2π)n/2

∫
Rn
u(x)e−ix·ξ dx.

The nonhomogeneous Sobolev space W s,p(Rn) is equipped with the
norm

‖u‖W s,p :=

(∫
Rn

∣∣∣F−1n (
(1 + |ξ|2)s/2û

)
(x)
∣∣∣p dx)1/p

.

Recently developed fractional Sobolev trace inequalities on W s,q(Rn)
are introduced:
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Proposition 1. [6] Let p, r be extended real numbers of 1
p + 1

r = 1,

1 ≤ p ≤ 2 and let s be a real number satisfying

s > (n+ 1)

(
1

p
− 1

r

)
+

1

r
.(2.1)

Then for u ∈W s,p(Rn+1) with the trace f on Rn, we have

‖f‖Lr(Rn) ≤ Cp,s‖u‖W s,p(Rn+1),(2.2)

for some positive constant Cp,s.

The main theorem of this paper can be stated as follows:

Theorem 1. Let n be an integer with n > 1. Let p, q be real numbers
satisfying 1 ≤ p ≤ 2, q ≥ 1 and

1

p
+
n− 1

nq
= 1.

For any u in W s,p(Rn+1) with u(x, 0) = f(x) in the sense of distribution
and

‖f‖Lq(Rn) = 1,

we have ∫
Rn
|f(x)|q ln |f(x)|dx ≤ n ln

(
Cp,s‖u‖W s,p(Rn+1)

)
(2.3)

under the condition

s >
n+ 1

p
− n− 1

q
=
n(2− p) + 1

p
.

The constant Cp,s is the same positive constant independent of u ap-
peared in (2.2).

We point out that the inequality (2.3) with p = 2 is reduced to the
inequality (1.2).

3. The proof of the main theorem

We assume that f belongs to the Schwartz class S(Rn) of functions
on Rn. We first state the following useful lemma.

Lemma 2. [5] Assume f ∈ Lp0(X,µ) for some 0 < p0 ≤ ∞ and
µ(X) = 1. Then we have f ∈ Lp(X,µ) for 0 < p ≤ p0, and that

lim
p→0

(∫
X
|f |pdµ

) 1
p

= exp

(∫
X

ln |f |dµ
)
.
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From the assumption that ‖f‖Lq(Rn) = 1, Lemma 2 with respect to
the probability measure |f(x)|qdx yields

lim
r→q

(∫
Rn
|f(x)|rdx

) 1
r−q

= lim
r→q

(∫
Rn
|f(x)|r−q|f(x)|qdx

)1/(r−q)

= exp

(∫
Rn
|f(x)|q ln |f(x)|dx

)
.

On the other hand, we split the index r into two numbers, and apply
Hölder’s inequality to get:∫

Rn
|f(x)|rdx=

∫
Rn
|f(x)|n(r−q)+{r−n(r−q)}dx

≤
(∫

Rn
|f(x)|n(r−q)αdx

) 1
α
(∫

Rn
|f(x)|{r−n(r−q)}βdx

) 1
β

,

where 1 < α <∞ and 1
α + 1

β = 1. Here β can be chosen to satisfy that

{r − n(r − q)}β = q.

Then the assumption ‖f‖Lq(Rn) = 1 can be used to simplify the inequal-
ity as follows:(∫

Rn
|f(x)|rdx

) 1
r−q

≤
(∫

Rn
|f(x)|n(r−q)αdx

) 1
α(r−q)

=

(∫
Rn
|f(x)|

nq
n−1dx

)n−1
q

.

The fractional Sobolev trace inequality, Proposition 1, can be applied to
achieve that for f ∈ S(Rn)(∫

Rn
|f(x)|rdx

) 1
r−q
≤ ‖f‖n

L
nq
n−1 (Rn)

≤
(
Cp,s‖u‖W s,p(Rn+1)

)n
where the indices p and q satisfy

s >
n+ 1

p
− n− 1

q
.

We now take the limit on both sides of the above inequality to get

exp

(∫
Rn
|f(x)|q ln |f(x)|dx

)
≤
(
Cp,s‖u‖W s,p(Rn+1)

)n
.
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For f ∈ S(Rn) with ‖f‖Lq(Rn) = 1, we have the generalized logarithmic
fractional Sobolev trace inequality of the form:∫

Rn
|f(x)|q ln |f(x)|dx ≤ n ln

(
Cp,s‖u‖W s,p(Rn+1)

)
.

The density argument completes the proof.
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