JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume **33**, No. 2, May 2020 http://dx.doi.org/10.14403/jcms.2020.33.2.271

ON SOME NEW CLASSES OF COMPACT-LIKE BITOPOLOGICAL SPACES

B M UZZAL AFSAN*

ABSTRACT. In this paper, we have introduced a new type of covering property $\beta_{(\omega_r,s)}^t$ -closedness, stronger than $P_{(\omega_r,s)}^t$ -closedness [3] in terms of (r, s)- β -open sets [9] and β - ω_t -closures in bitopological spaces along with its several characterizations via filter bases and grills [15] and various properties. Further grill generalizations of $\beta_{(\omega_r,s)}^t$ -closedness (namely, $\beta_{(\omega_r,s)}^t$ -closedness modulo grill) and associated concepts have also been investigated.

1. Introduction

In the year 1963, J. C. Kelly [8] has introduced the concept of bitopological spaces which now becomes a mature field of topology. The notion of ω -open sets introduced by H. Z. Hdeib [5, 6] has been studied by a good number of researchers in recent times, namely Noiri, Omari and Noorani [11, 12], Omari and Noorani [13, 14], Zoubi and Nashef [16] and Afsan and Basu [2, 3, 4]. In the present paper, in section 3, we have initiated β -(ω_r, s)- θ_t -closures of sets and allied concepts in bitopological spaces which have been exploited effectively in investigating certain concepts which have been developed in the subsequent sections. In section 4, a new type of covering property $\beta^t_{(\omega_r,s)}$ -closedness is introduced in a bitopological space (X, τ_1, τ_2) using (r, s)- β -open sets [9] and β - ω_t closures. Several characterizations via filter bases and grills [15] and various properties of such concept have been discussed. Further, in the last section, the concept of $\beta^t_{(\omega_r,s)}$ -closedness modulo grill along with its simple properties have also been investigated.

Received December 25, 2019; Accepted April 21, 2020.

²⁰¹⁰ Mathematics Subject Classification: Primary 54D20, 54D25, 54D99, 54A20. Key words and phrases: β - ω -closure, β -(ω_r, s)- θ_t -closure, $\beta_{(\omega_r, s)}^t$ -closed, $\beta_{(r, s)}^t$ -closed, $\beta_{(r, s)}^t$ -closed, $\beta_{(\omega_r, s)}$ -closed modulo grill.

2. Prerequisites

Let (X, τ) be a topological space and $A \subset X$. Then a point $x \in X$ is called a condensation point of A if for each open set U containing x, $A \cap U$ is uncountable. A set A is called ω -closed [5] if it contains all of its condensation points and the complement of an ω -closed set is called an ω -open set [5] or equivalently, $A \subset X$ is ω -open if and only if for each $x \in A$ there exists an open set U containing x such that U - Ais countable. Throughout this paper, spaces (X, τ_1, τ_2) and $((Y, \rho_1, \rho_2))$ (or simply X and Y) represent non-empty bitopological spaces and r, sand t are indices varying over the set $\{1,2\}$. The set of all ω -open sets of space X when the topology τ_r is considered is denoted by τ_{ω_r} . It is to be noted that τ_{ω_r} is a topology on X finer than τ_r [5]. A subset A of a topological space X is called β -open [1] (resp. pre- ω -open [11], β - ω -open [11]) if $A \subset cl(int(cl(A)))$ (resp. $A \subset int_{\omega}(cl(A))$ and $A \subset cl(int_{\omega}(cl(A))))$. The closure (resp. interior, ω -interior [11], ω closure [11], pre- ω -interior [4], pre- ω -closure [4]) of a subset A of a space X with respect to the topology τ_r (where r = 1, 2) (read as r-closure (resp. *r*-interior, ω_r -interior, ω_r -closure, pre- ω_r -interior, pre- ω_r -closure, r- β -closure)) are denoted by $cl_r(A)$ (resp. $int_r(A)$, $int_{\omega_r}(A)$, $cl_{\omega_r}(A)$, $pint_{\omega_r}(A), pcl_{\omega_r}(A), \beta cl_r(A))$. A subset A of a bitopological space X is called (resp. (r, s)-preopen [7], and (r, s)- β -open [9]) if $A \subset int_r(cl_s(A))$ (resp. $A \subset cl_s(int_r(cl_s(A))))$). The complement of (r, s)-preopen (resp. (r, s)- β -open) set is called (r, s)-preclosed [7] (resp. (r, s)- β -closed [9]). The family of all (r, s)-preopen (resp. (r, s)- β -open, and (r, s)- β -clopen) subsets of X is denoted by (r, s)-PO(X) (resp. (r, s)- $\beta O(X)$ and (r, s)- $\beta CO(X)$). The family of all (r, s)-preopen (resp. (r, s)- β -open, and (r, s)- β -clopen) subsets of X containing a point x of X is denoted by (r,s)-PO(X,x) (resp. (r,s)- $\beta O(X,x)$ and (r,s)- $\beta CO(X,x)$) and the family of all (r, s)- β -open subsets of X containing a subset $K \subset X$ is denoted by (r, s)- $\beta O(X, K)$. The family of all β -open sets in the topological space (X, τ_r) is denoted by $(r)\beta O(X)$. $(r, s)\beta cl(A)$ is the intersection of all (r, s)- β -closed subsets of X containing A [9]. Thron [15] has defined a grill as a non-empty family \mathcal{G} of non-empty subsets of X satisfying (a) $A \in \mathcal{G}$ and $A \subset B \Rightarrow B \in \mathcal{G}$ and (b) $A \cup B \in \mathcal{G} \Rightarrow$ either $A \in \mathcal{G}$ or $B \in \mathcal{G}$. Thron [15] also has shown that $\mathcal{F}(\mathcal{G}) = \{A \subset X : A \cap F \neq \emptyset, \forall F \in \mathcal{G}\}$ is a filter on X and there exists

an ultrafilter \mathcal{F} such that $\mathcal{F}(\mathcal{G}) \subset \mathcal{F} \subset \mathcal{G}$.

3. β -(ω_r, s)- θ_t -closure operators

DEFINITION 3.1. Let A be any subset of a topological space X. Then β - ω -interior (resp. β - ω -closure) of A is the set $\beta int_{\omega}^{\tau}(A) = \bigcup \{S \subset A : S \in \beta \omega O(X)\}$ (resp. $\beta cl_{\omega}^{\tau}(A) = \cap \{S \supset A : X - G \in \beta \omega O(X)\}$). If no confusion arises, β - ω -interior (resp. β - ω -closure) of A is denoted by $\beta int_{\omega}(A)$ (resp. $\beta cl_{\omega}(A)$). If X is a bitopological space, then the β - ω -interior (resp. β - ω -closure) of A with respect to the topology τ_t is denoted by $\beta int_{\omega_t}(A)$ (resp. $\beta cl_{\omega_t}(A)$).

Now we state the following theorem.

THEOREM 3.2. Let A and B be any two subsets of a topological space X. Then the following properties hold:

- (a) $\beta cl_{\omega}(A) \subset \beta cl(A), \ \beta cl_{\omega}(A) \subset pcl_{\omega}(A) \text{ and } \beta cl_{\omega}(A) \subset cl_{\omega}(A).$
- (b) $A \subset B$ implies $\beta cl_{\omega}(A) \subset \beta cl_{\omega}(B)$ and $\beta int_{\omega}(A) \subset \beta int_{\omega}(B)$.
- (c) $\beta cl_{\omega}(\beta cl_{\omega}(A)) = \beta cl_{\omega}(A)$ and $\beta int_{\omega}(\beta int_{\omega}(A)) = \beta int_{\omega}(A)$.
- (d) A is β - ω -closed if and only if $\beta cl_{\omega}(A) = A$.
- (e) A is β - ω -open if and only if $\beta int_{\omega}(A) = A$.
- (f) $\beta cl_{\omega}(X A) = X \beta int_{\omega}(A).$
- (g) $\beta int_{\omega}(X A) = X \beta cl_{\omega}(A).$

REMARK 3.3. For a subset A of a topological space, $\beta cl_{\omega}(A) \neq \beta cl(A)$ and $\beta cl_{\omega}(A) \neq pcl_{\omega}(A)$ in general, which is shown in the following examples.

EXAMPLE 3.4. (a) Consider the space $X = \mathbf{Q}$ with the topology generated by the base $\mathcal{B} = \{B_r : r \in \mathbf{Q}\}$, where $B_r = \{1, r\}$. Then the topology on X is $\tau = \{\emptyset\} \cup \{S \subset \mathbf{Q} : S \text{ contains } 1\} = \beta O(X)$ and $\tau_{\omega} = P(X) = \beta \omega O(X)$, where P(X) is the power set of X. Let A be the set of all odd integers. Then $\beta cl_{\omega}(A) = A$ and $\beta cl(A) = \mathbf{Q}$. (b) Consider the real line $X = \mathbf{R}$ with the usual topology τ . Then $\tau = \tau_{\omega}$ and so $(0,1] \in \beta \omega O(X) - P \omega O(X)$. Then $\beta cl_{\omega}((-\infty,0] \cup (1,\infty)) =$ $(-\infty,0] \cup (1,\infty)$ and $pcl_{\omega}((-\infty,0] \cup (1,\infty)) = (-\infty,0] \cup [1,\infty)$.

DEFINITION 3.5. A point $x \in X$ is said to be a β - (ω_r, s) - θ_t -accumulation (resp. (r, s)- θ_t - β -accumulation) point of a subset A of a bitopological space X if $\beta cl_{\omega_t}(U) \cap A \neq \emptyset$ (resp. $\beta cl_t(U) \cap A \neq \emptyset$) for every $U \in (r, s)\beta O(X, x)$. The set of all β - (ω_r, s) - θ_t -accumulation (resp. (r, s)- θ_t - β -accumulation) points of A is called the β - (ω_r, s) - θ_t -closure (resp. (r, s)- θ_t - β -closure) of A and is denoted by $\beta_{(\omega_r, s)} cl_{\theta_t}(A)$ (resp. (r, s)- θ_t -closed (resp. $(r, s)\theta_t$ - β -closed set) if $\beta_{(\omega_r, s)} cl_{\theta_t}(A) = A$ (resp.

 $(r,s)\beta cl_{\theta_t}(A) = A$). The complement of a β - (ω_r, s) - θ_t -closed set (resp. $(r,s)\theta_t$ - β -closed set) is called β - (ω_r, s) - θ_t -open set (resp. $(r,s)\theta_t$ - β -open set).

If $\tau_1 = \tau_2 = \tau$, i.e. if X is a topological space, we drop the indices r, s and t in the terms of the definitions.

LEMMA 3.6. A subset A of space X is a β - (ω_r, s) - θ_t -open if and only if for each $x \in A$, there exists $V \in (r, s)\beta O(X, x)$ such that $\beta cl_{\omega_t}(V) \subset A$.

Proof. Let A be a β - (ω_r, s) - θ_t -open set. Suppose $x \in A$. Then X - A is β - (ω_r, s) - θ_t -closed and thus for each $x \in A$, there exists a $V \in (r, s)\beta O(X, x)$ such that $\beta cl_{\omega_t}(V) \cap (X - A) = \emptyset$. Hence $\beta cl_{\omega_t}(V) \subset A$.

Conversely, let there exists an $x \in A$ such that $\beta cl_{\omega_t}(V) \not\subset A$ for all $V \in (r,s)\beta O(X,x)$. Thus $\beta cl_{\omega_t}(V) \cap (X-A) \neq \emptyset$ for all $V \in (r,s)\beta O(X,x)$ and so $x \in \beta_{(\omega_r,s)}cl_{\theta_t}(X-A)$. Hence X - A is not β - $(\omega_r,s) -\theta_t$ -closed.

Now we state following theorem:

THEOREM 3.7. Let A and B be any subsets of a bitopological space X. Then the following properties hold:

(a) $(r, s)\theta_t$ - β -closed sets and pre- (ω_r, s) - θ_t -closed sets are β - (ω_r, s) - θ_t -closed sets.

(b) $\beta_{(\omega_r,s)}cl_{\theta_t}(A) \subset (r,s)\beta cl_{\theta_t}(A) \text{ and } \beta_{(\omega_r,s)}cl_{\theta_t}(A) \subset p_{(\omega_r,s)}cl_{\theta_t}(A),$

(c) $A \subset B$ implies $\beta_{(\omega_r,s)} cl_{\theta_t}(A) \subset \beta_{(\omega_r,s)} cl_{\theta_t}(B)$,

(d) the intersection of an arbitrary family of β -(ω_r, s)- θ_t -closed sets is β -(ω_r, s)- θ_t -closed in X.

Proof. Proof of (a), (b), (c) are straightforward. So we prove (d) only.

(d): Let $\{A_{\alpha} : \alpha \in \Delta\}$ be a family of β - (ω_r, s) - θ_t -closed sets. Let $x \in \beta_{(\omega_r,s)}cl_{\theta_t}(\bigcap_{\alpha\in\Delta}(A_{\alpha}))$. Then for all $U \in (r,s)\beta O(X,x), \emptyset \neq (\bigcap_{\alpha\in\Delta}(A_{\alpha}))\cap \beta cl_{\omega_t}(U) = \bigcap_{\alpha\in\Delta}(A_{\alpha}\cap\beta cl_{\omega_t}(U))$. So for each $\alpha \in \Delta$, $A_{\alpha}\cap\beta cl_{\omega_t}(U) \neq \emptyset$. Thus $x \in \beta_{(\omega_r,s)}cl_{\theta_t}(A_{\alpha}) = A_{\alpha}$ for each $\alpha \in \Delta$ and hence $x \in \bigcap_{\alpha\in\Delta}(A_{\alpha})$. Thus $\bigcap_{\alpha\in\Delta}(A_{\alpha})$ is β - (ω_r, s) - θ_t -closed in X.

The following examples reflect the fact that the converse of Theorem 3.7.(b) is not true, i.e. $\beta_{(\omega_r,s)}cl_{\theta_t}(A) \neq (r,s)\beta cl_{\theta_t}(A)$ and $\beta_{(\omega_r,s)}cl_{\theta_t}(A) \neq p_{(\omega_r,s)}cl_{\theta_t}(A)$. In fact $\beta_{\omega}cl_{\theta}(A) \neq \beta cl_{\theta}(A)$ and $\beta_{\omega}cl_{\theta}(A) \neq p_{\omega}cl_{\theta}(A)$. \Box

EXAMPLE 3.8. (a) Consider the topological space $X = \mathbf{Q}$ with the topology τ as defined in Example 3.4.(a) and Let A be the set of all odd integers. Then $\beta_{\omega} cl_{\theta}(A) = A$ and $\beta cl_{\theta}(A) = \mathbf{Q}$.

(b) Consider the real line $X = \mathbf{R}$ with the usual topology τ and $A = (-\infty, 0] \cup (1, \infty)$. Then $1 \in p_{\omega} cl_{\theta}(A) - \beta_{\omega} cl_{\theta}(A)$.

4. $\beta_{(\omega_n,s)}^t$ -closed spaces

DEFINITION 4.1. A subset S of a bitopological space X is called $\beta_{(\omega_r,s)}^t$ -closed (resp. $\beta_{(r,s)}^t$ -closed) relative to X if every (r,s)- β -open cover of X has a finite subfamily whose β - ω_t -closures (resp. t- β -closures) cover S. If S = X, then the $\beta_{(\omega_r,s)}^t$ -closed (resp. $\beta_{(r,s)}^t$ -closed) set S relative to X is called $\beta_{(\omega_r,s)}^t$ -closed (resp. $\beta_{(r,s)}^t$ -closed) bitopological space. We read $\beta_{(\omega_r,s)}^t$ -closedness as β_ω -closedness if the topologies on X are taken the same.

It is easy to verify that every $\beta_{(\omega_r,s)}^t$ -closed subset of any bitopological space is $\beta_{(r,s)}^t$ -closed and $P_{(\omega_r,s)}^t$ -closed. Again in a But a $\beta_{(r,s)}^t$ -closed subset of any bitopological space need not be $\beta_{(\omega_r,s)}^t$ -closed.

EXAMPLE 4.2. Consider the space $X = \mathbf{Q}$ with the topology $\tau_1 = \{\emptyset\} \cup \{S \subset \mathbf{Q} : S \text{ contains } 1\}$ and $\tau_2 = \{\emptyset, X\}$. Then $(2, 1)\beta O(X) = \{\emptyset\} \cup \{S \subset \mathbf{Q} : S \text{ contains } 1\}$ and $\tau_{\omega_1} = P(X) = (1)\beta\omega O(X)$, where P(X) is the power set of X. So, X is $\beta_{(2,1)}^1$ -closed because every (2, 1)- β -open set has \mathbf{Q} as its (1)- β -closure. but since the (2, 1)- β -open cover $\{\{1, r\} : r \in \mathbf{Q}\}$ has no finite subfamily whose β - ω_1 -closures cover S. So X is not $\beta_{(\omega_2,1)}^1$ -closed.

THEOREM 4.3. Let A and B be subsets of X. If A is β -(ω_r, s)- θ_t closed and B is $\beta^t_{(\omega_r,s)}$ -closed relative to X, then $A \cap B$ is $\beta^t_{(\omega_r,s)}$ -closed relative to X.

Proof. Let $\{U_{\alpha} : \alpha \in \Delta\}$ be a cover of $A \cap B$ by (r, s)- β -open subsets of X. Since A is β - (ω_r, s) - θ_t -closed, then for each $x \in B - A$ there exists $V_x \in (r, s)$ - $\beta O(X, x)$ such that $\beta cl_{\omega_t}(V_x) \cap A = \emptyset$. Then $\{U_{\alpha} : \alpha \in \Delta\} \cup \{V_x : x \in B - A\}$ is a cover of B by (r, s)- β -open subsets of X. So the $\beta_{(\omega_r, s)}^t$ -closedness of B relative to X, ensures there existence of finite number of points $x_1, x_2, \dots, x_n \in B - A$ and finite number of indices $\alpha_1, \alpha_2, \dots, \alpha_m \in \Delta$ such that $B \subset (\bigcup_{i=1}^n \beta cl_{\omega_t}(V_{x_i})) \cup (\bigcup_{j=1}^m \beta cl_{\omega_t}(U_{\alpha_j}))$ and thus $A \cap B \subset \bigcup_{j=1}^m \beta cl_{\omega_t}(U_{\alpha_j})$. So $A \cap B$ is $\beta_{(\omega_r, s)}^t$ -closed relative to X.

COROLLARY 4.4. If X is a $\beta_{(\omega_r,s)}^t$ -closed bitopological space (resp. β_{ω} -closed topological space), then every β -(ω_r, s)- θ_t -closed (resp. β - ω - θ -closed) subset of X is $\beta_{(\omega_r,s)}^t$ -closed (resp. β_{ω} -closed) relative to X.

THEOREM 4.5. A β_{ω} -closed set S relative to a T_2 topological space X is β - ω - θ -closed if S is β - ω -open.

Proof. Let $x \in X - S$. Then for each $p \in S$, there exist two disjoint open sets U_p and V_p such that $x \in U_p$ and $p \in V_p$. Then $\{V_p : p \in S\}$ is a cover of S by open (and so β -open) sets of X. Since S is β_{ω} -closed set relative to X, there exist $p_1, p_2, \ldots, p_n \in S$ such that $S \subset \bigcup_{i=1}^n \beta cl_{\omega}(V_{p_i}) \subset \beta cl_{\omega}(\bigcup_{i=1}^n (V_{p_i}))$. Now consider $U = \cap U_{p_i}$ and $V = \bigcup V_{p_i}$. Then $U \cap V = \emptyset$ and so $\beta cl_{\omega}(V) \subset cl_{\omega}(V) \subset cl(V) \subset$ X - U. Hence $\beta cl_{\omega}(V) \cap U = \emptyset$ and so $\beta int_{\omega}(\beta cl_{\omega}(V)) \cap U = \emptyset$. Thus $\beta int_{\omega}(\beta cl_{\omega}(V)) \cap \beta cl_{\omega}(U) = \emptyset$. But since S is β - ω -open, $S \cap \beta cl_{\omega}(U) = \emptyset$. Therefore S is β - ω - θ -closed.

DEFINITION 4.6. A filter base \mathcal{F} (resp. a grill \mathcal{G}) on a topological space (X, τ_1, τ_2) is said to β - (ω_r, s) - θ_t -converge to a point $x \in X$ if for each $V \in (r, s)\beta O(X, x)$, there exists $F \in \mathcal{F}$ (resp. $F \in \mathcal{G}$) such that $F \subset \beta cl_{\omega_t}(V)$. A filter base \mathcal{F} is said to β - (ω_r, s) - θ_t -accumulate (or β - (ω_r, s) - θ_t -adhere) at $x \in X$ if $\beta cl_{\omega_t}(V) \cap F \neq \emptyset$ for every $V \in (r, s)\beta O(X, x)$ and every $F \in \mathcal{F}$. The collection of all the points of X at which the filter base $\mathcal{F} \beta$ - (ω_r, s) - θ_t -adheres is denoted by $\beta_{(\omega_r, s)}$ - θ_t - $ad\mathcal{F}$. We read the term β - (ω_r, s) - θ_t -convergence (resp. β - (ω_r, s) - θ_t -adherent point) as β - ω - θ -convergence (resp. β - ω - θ -adherent point) if the topologies on Xare taken the same.

THEOREM 4.7. An ultrafilter base $\mathcal{F} \beta$ -(ω_r, s)- θ_t -converges to a point $x \in X$ if and only if it β -(ω_r, s)- θ_t -accumulates to the point x.

Proof. Here only to prove is that if $\mathcal{F} \ \beta_{-}(\omega_{r}, s) - \theta_{t}$ -accumulates to the point x, then $\mathcal{F} \ \beta_{-}(\omega_{r}, s) - \theta_{t}$ -converges to the point x. If \mathcal{F} does not $\beta_{-}(\omega_{r}, s) - \theta_{t}$ -converge to the point x, there exists a $V \in (r, s)\beta O(X, x)$ such that $F \not\subset \beta cl_{\omega_{t}}(V)$ and so $(X - \beta cl_{\omega_{t}}(V)) \cap F \neq \emptyset$ for every $F \in \mathcal{F}$. Since \mathcal{F} is an ultrafilter base on X, $\beta cl_{\omega_{t}}(V) \in \mathcal{F}$. Again since $\mathcal{F} \ \beta_{-}(\omega_{r}, s) - \theta_{t}$ -accumulates to the point x, $\beta cl_{\omega_{t}}(V) \cap F \neq \emptyset$ for every $F \in \mathcal{F}$ and so $\beta cl_{\omega_{t}}(V) \in \mathcal{F}$.

THEOREM 4.8. For a bitopological space X the following conditions are equivalent:

(a) X is $\beta_{(\omega_r,s)}^t$ -closed,

(b) for every family $\{V_{\alpha} : \alpha \in \Delta\}$ of (r, s)- β -closed subsets such that

 $\bigcap \{V_{\alpha} : \alpha \in \Delta\} = \emptyset, \text{ there exist } \alpha_1, \alpha_2, \dots, \alpha_n \in \Delta \text{ such that } \bigcap_{i=1}^n \beta int_{\omega_t}(V_{\alpha_i}) = \emptyset,$

(c) every ultrafilter base β -(ω_r, s)- θ_t -converges to some point of X,

(d) every filter base β -(ω_r, s)- θ_t -adheres at some point of X,

(e) every grill on X β -(ω_r, s)- θ_t -converges to some point of X.

Proof. (a) \Leftrightarrow (b). Consider $\Sigma = \{V_{\alpha} : \alpha \in \Delta\}$ be a family of (r, s)- β -closed subsets such that $\cap\{V_{\alpha} : \alpha \in \Delta\} = \emptyset$. Then there exist finite number of indices $\alpha_1, \alpha_2, ..., \alpha_k \in \Delta$ such that $\bigcup_{i=1}^n \beta cl_{\omega_t}(X - V_{\alpha_i}) = X$. Hence $X - \bigcup_{i=1}^n \beta cl_{\omega_t}(X - V_{\alpha_i}) = \emptyset$ and so by Theorem 3.2, $\bigcap_{i=1}^n \beta int_{\omega_t}(V_{\alpha_i}) = \emptyset$.

Conversely, let $\{U_{\alpha} : \alpha \in \Delta\}$ be an (r, s)- β -open cover of X. Then $\{X - U_{\alpha} : \alpha \in \Delta\}$ is a family of (r, s)- β -closed subsets of X with $\cap\{X - U_{\alpha} : \alpha \in \Delta\} = \emptyset$. Thus by (b), there exist $\alpha_1, \alpha_2, \dots, \alpha_n \in \Delta$ such that $\cap_{i=1}^n \beta int_{\omega_t}(X - U_{\alpha_i}) = \emptyset$ i.e. by Theorem 3.2, $\cup_{i=1}^n \beta cl_{\omega_t}(U_{\alpha_i}) = X$. So X is $\beta_{(\omega_r,s)}^t$ -closed.

(b) \Rightarrow (c). Let \mathcal{F} be an ultrafilter base on X which does not β - (ω_r, s) - θ_t -converge to any point of X. Then by Theorem 4.7, \mathcal{F} can not β - ω - θ_t -accumulate at any point of X and so for each $x \in X$, there are an $F_x \in \mathcal{F}$ and a $V_x \in (r, s)\beta O(X, x)$ such that $\beta cl_{\omega_t}(V_x) \cap F_x = \emptyset$ and so $F_x \subset X - \beta cl_{\omega_t}(V_x) = \beta int_{\omega_t}(V_x)$ (by Theorem 3.2). Again $\{X - V_x : x \in X\}$ is a family of (r, s)- β -closed subsets of X satisfying $\cap \{X - V_x : x \in X\} = \emptyset$. So there exists a finite subset X_0 of X such that $\cap_{x \in X_0} \beta int_{\omega_t}(V_x) = \emptyset$. Since \mathcal{F} is a filter base on X, there exists $F_0 \in \mathcal{F}$ such that $F_0 \subset \cap_{x \in X_0} F_x$ and so $F_0 = \emptyset$ — a contradiction.

(c) \Rightarrow (d). Let \mathcal{F} be any filter base on X and \mathcal{F}_0 be an ultrafilter base on X containing \mathcal{F} . Then (c) ensures that $\mathcal{F}_0 \ \beta$ - (ω_r, s) - θ_t -converges to some point $x \in X$. Therefore for each $V \in (r, s)\beta O(X, x)$, there exists $F_0 \in \mathcal{F}_0$ such that $F_0 \subset \beta cl_{\omega_t}(V)$. Now since for each $F \in \mathcal{F}$, $\emptyset \neq F_0 \cap F \subset \beta cl_{\omega_t}(V) \cap F$, $\beta cl_{\omega_t}(V) \cap F \neq \emptyset$ for every $V \in (r, s)\beta O(X, x)$ and every $F \in \mathcal{F}$. So $x \in \beta_{(\omega_r, s)}$ - θ_t -ad \mathcal{F} .

(c) \Rightarrow (e). Let \mathcal{G} be a grill on X. Then $\mathcal{F}(\mathcal{G}) = \{F \subset X : F \cap E \neq \emptyset, \forall E \in \mathcal{G}\}$ is a filter on X and there exists an ultrafilter \mathcal{F} such that $\mathcal{F}(\mathcal{G}) \subset \mathcal{F} \subset \mathcal{G}$ [29]. Let $\mathcal{F} \beta$ - (ω_r, s) - θ_t -converges to $x \in X$. If possible, let \mathcal{G} does not β - (ω_r, s) - θ_t -converge to x. Then there exists $V \in (r, s)\beta O(X, x)$ such that $E \not\subset \beta cl_{\omega_t}(V)$ and so $E \cap (X - \beta cl_{\omega_t}(V)) \neq \emptyset$ for all $E \in \mathcal{G}$. So $X - \beta cl_{\omega_t}(V) \in \mathcal{F}(\mathcal{G}) \subset \mathcal{G}$. Again by Theorem 4.7, $\beta cl_{\omega_t}(V) \cap F \neq \emptyset$ for every $F \in \mathcal{F}$. So $\beta cl_{\omega_t}(V) \in \mathcal{F}$. Hence $\beta cl_{\omega_t}(V) \in \mathcal{G}$ — a contradiction.

(e) \Rightarrow (c). Since every ultrafilter base is a grill, (c) immediately follows.

(d) \Rightarrow (b). Let $\{V_{\alpha} : \alpha \in \Delta\}$ be a family of (r, s)- β -closed subsets of X such that $\cap\{V_{\alpha} : \alpha \in \Delta\} = \emptyset$. If possible, let $\cap_{\lambda \in \Gamma} \beta int_{\omega_t}(V_{\lambda}) \neq \emptyset$ for each finite subset Γ of Δ . Then the family $\mathcal{F} = \{\cap\{\beta int_{\omega_t}(V_{\gamma}), \gamma \in \Gamma\}, \Gamma \subset \Delta, card(\Gamma) < \mathcal{N}_0\}$, where \mathcal{N}_0 is the cardinality of the set of all natural numbers is a filter base on X. Then by (d), $\mathcal{F} \ \beta$ - (ω_r, s) - θ_t -accumulates at some point x of X. Since $\{X - V_{\alpha} : \alpha \in \Delta\}$ is a (r, s)- β -open cover of $X, x \in X - V_{\alpha_0}$ for some $\alpha_0 \in \Delta$. Let $G = X - V_{\alpha_0}$. Then $G \in (r, s)\beta O(X, x)$ and $\beta int_{\omega_t}(V_{\alpha_0}) \in \mathcal{F}$ such that $\beta cl_{\omega_t}(G) \cap \beta int_{\omega_t}(V_{\alpha_0}) = \emptyset$ — a contradiction.

From the above theorem the following theorem follows immediately.

THEOREM 4.9. For a topological space X, the following conditions are equivalent:

(a) X is β_{ω} -closed,

(b) for every family $\{V_{\alpha} : \alpha \in \Delta\}$ of β -closed subsets such that $\cap\{V_{\alpha} : \alpha \in \Delta\} = \emptyset$, there exist $\alpha_1, \alpha_2, \dots, \alpha_n \in \Delta$ such that $\cap_{i=1}^n \beta int_{\omega}(V_{\alpha_i}) = \emptyset$,

(c) every ultrafilter base β - ω - θ -converges to some point of X,

(d) every filter base β - ω - θ -adheres at some point of X,

(e) every grill on $X \beta - \omega - \theta$ -converges to some point of X.

DEFINITION 4.10. A bitopological space X is called β - $(\omega_r, s)t$ -regular if for each $x \in X$ and $U \in (r, s)\beta O(X, x)$, there exists a $V \in (r, s)\beta O(X, x)$ such that $cl_{\omega_t}(V) \subset U$. β - $(\omega_r, s)t$ -regularity of X is referred as β - ω regularity if the topologies on X are taken the same.

THEOREM 4.11. For a β - $(\omega_r, s)t$ -regular bitopological space X, the following two conditions are equivalent: (i) X is $\beta_{(\omega_r,s)}^t$ -closed,

(ii) every cover of X by β -(ω_r, s)- θ_t -open sets of X has a finite subcover.

Proof. (i) \Rightarrow (ii). Let X be $\beta_{(\omega_r,s)}^t$ -closed and Σ be any β -(ω_r, s)- θ_t open cover of X. Then for each $x \in X$, there exists an $U_x \in \Sigma$ containing x and so Theorem 3.6 ensures the existence of a $V_x \in (r, s)\beta O(X, x)$ such that $\beta cl_{\omega_t}(V_x) \subset cl_{\omega_t}(V_x) \subset U_x$. Since $\{V_x : x \in X\}$ is an (r, s)- β -open cover of X, there exist finite number of points $x_1, x_2, ..., x_k \in X$ such that $X = \bigcup_{i=1}^k \beta cl_{\omega_t}(V_{x_i})$ and so $X = \bigcup_{i=1}^k U_{x_i}$. Hence $\{U_{x_i} : x \in X, i =$ $1, 2, ..., k\}$ is a finite subcover of Σ .

(ii) \Rightarrow (i). Let X be a $(\omega_r, s)t$ -regular bitopological space. Consider Ω be an (r, s)- β -open cover of X. Let $x \in X$ and $x \in U_x$ for some $U_x \in \Omega$. Since X is β - $(\omega_r, s)t$ -regular, there exists $V_x \in (r, s)\beta O(X, x)$ satisfying $\beta cl_{\omega_t}(V_x) \subset cl_{\omega_t}(V_x) \subset U_x$. Then by Lemma 3.6 for each $x \in X, U_x$ is

 β - (ω_r, s) - θ_t -open set of X. Thus by (ii), there exist $x_1, x_2, ..., x_k \in X$ such that $X = \bigcup_{i=1}^k U_{x_i} \subset \bigcup_{i=1}^k \beta cl_{\omega_t}(U_{x_i})$.

THEOREM 4.12. For a β - ω -regular topological space X, the following two conditions are equivalent:

(i) X is β_{ω} -closed,

(ii) every cover of X by β - ω - θ -open sets of X has a finite subcover.

THEOREM 4.13. For a β - $(\omega_r, s)t$ -regular bitopological space X, the following two conditions are equivalent:

(i) X is $\beta_{(\omega_r,s)}^t$ -closed,

(ii) every family of β -(ω_r, s)- θ_t -closed subsets of X with finite intersection property has a nonempty intersection.

Proof. (i) \Rightarrow (ii). Let X be $\beta_{(\omega_r,s)}^t$ -closed and $\{V_\alpha : \alpha \in \Delta\}$ be a family of β - (ω_r, s) - θ_t -closed subsets of X with finite intersection property having empty intersection. Then $\{X - V_\alpha : \alpha \in \Delta\}$ be a β - (ω_r, s) - θ_t -open cover of X. Then the theorem 4.11. ensures the existence of a finite subset Δ_0 of Δ such that $\cup \{X - V_\alpha : \alpha \in \Delta_0\} = X$ and so $\cap \{V_\alpha : \alpha \in \Delta_0\} = \emptyset$ — a contradiction.

(ii) \Rightarrow (i). Let X be a β - $(\omega_r, s)t$ -regular bitopological space. If X be not $\beta^t_{(\omega_r,s)}$ -closed, Theorem 4.11 ensures the existence of a β - (ω_r, s) - θ_t -open cover $\{U_{\alpha} : \alpha \in \Delta\}$ of X without any finite subcover. Then $\{X - U_{\alpha} : \alpha \in \Delta\}$ be a family of β - (ω_r, s) - θ_t -closed subsets of X with finite intersection property. Therefore by the hypothesis (ii), $\cap\{X - U_{\alpha} : \alpha \in \Delta\} \neq \emptyset$ and so $\cup \{U_{\alpha} : \alpha \in \Delta\} \neq X$ — a contradiction.

As an application of Theorem 4.13, we prove the following "fixed set theorem" for multifunction:

THEOREM 4.14. Let X be a $\beta_{(\omega_r,s)}^t$ -closed bitopological space and $\Omega: X \to X$ be any multifunction preserving β - (ω_r, s) - θ_t -closed subsets to β - (ω_r, s) - θ_t -closed subsets. Then there exists a subset $K \subset X$ such that $\Omega(K) = K$.

Proof. It is obvious to note that $\Pi = \{A \subset X : \Omega(A) \subset A, A \neq \emptyset, A$ be β - (ω_r, s) - θ_t -closed} be a totally order set under the set inclusion. Theorem 3.7.(d) implies that every subfamily of Π has a lower bound and hance Zorns Lemma implies that there is a minimal element K of Π . Since the multifunction Ω preserves β - (ω_r, s) - θ_t -closed subsets to β - (ω_r, s) - θ_t -closed subsets and K is minimal, $K \subset \Omega(K) \subset K$ and hance $\Omega(K) = K$. \Box

DEFINITION 4.15. A point $x \in X$ is called β - (ω_r, s) - θ_t -complete adherent point of a subset A of X if for each β - (ω_r, s) - θ_t -open set U containing x, $card(A \cap U) = card(A)$. The term β - (ω_r, s) - θ_t -complete adherent point is referred as β - ω - θ -complete adherent point if the topologies on X are taken same.

DEFINITION 4.16. A net $(x_{\lambda})_{\lambda \in \Upsilon}$ (where Υ is a directed set) on a bitopological space X is called β - (ω_r, s) - θ_t -adheres at a point $x \in X$ if for every $U \in (r, s)\beta O(X, x)$ and for every $\lambda \in \Upsilon$, there exists $\mu(\succeq \lambda) \in \Upsilon$ such that $x_{\mu} \in \beta cl_{\omega_t}(U)$. The term β - (ω_r, s) - θ_t -adherent point is referred as β - ω - θ -adhere point if the topologies on X are taken same.

THEOREM 4.17. For a β -(ω_r, s)t-regular bitopological space X, the following three statements are equivalent:

(i) X is $\beta_{(\omega_r,s)}^t$ -closed,

(ii) every net $(x_{\lambda})_{\lambda \in \Upsilon}$, where Υ is a well-ordered index set β - (ω_r, s) - θ_t -adheres at a point in X,

(iii) every infinite subset A of X has a β -(ω_r, s)- θ_t -complete adherent point in X.

Proof. (i) \Rightarrow (ii). Let X be $\beta_{(\omega_r,s)}^t$ -closed and $(x_\lambda)_{\lambda\in\Upsilon}$, where Υ is a well-ordered index set be a net on X. If possible, let $(x_\lambda)_{\lambda\in\Upsilon}$ does not β - (ω_r,s) - θ_t -adhere at any point of X. So for each $x \in X$, there exists an $U_x \in (r,s)\beta O(X,x)$ and a $\lambda(x) \in \Upsilon$ such that $x_\mu \notin \beta cl_{\omega_t}(U_x)$ for all $\mu(\succeq \lambda(x)) \in \Upsilon$. Since $\{V_x : x \in X\}$ forms a cover of X by (r,s)- β -open sets of X, there exist finite number of points $x_1, x_2, \dots, x_k \in X$ such that $X = \bigcup_{i=1}^k \beta cl_{\omega_t}(U_{x_i})$. Consider an $\eta \in \Upsilon$ such that $\eta \succeq \lambda(x_i)$ for all $i = 1, 2, \dots, n$. Then for each $i = 1, 2, \dots, n, x_\mu \notin \beta cl_{\omega_t}(U_{x_i})$ for all $\mu \succeq \eta$ — a contradiction.

(ii) \Rightarrow (iii). Let A be an infinite subset of X. Then A can be wellordered by some minimal well-ordering \preceq . Thus A may be thought as a net with a well-ordered index set as domain. Then by (ii), the net A β -(ω_r, s)- θ_t -adheres at a point $x \in X$. Now consider an $U \in (r, s)\beta O(X, x)$. Since X is β -(ω_r, s)t-regular, there exists $V \in (r, s)\beta O(X, x)$ such that $\beta cl_{\omega_t}(V) \subset cl_{\omega_t}(V) \subset U$. Now since net A β -(ω_r, s)- θ_t -adheres at a point $x \in X$, so for any $\lambda \in A$, there exists $\mu(\succeq \lambda) \in A$ such that $x_{\mu} \in \beta cl_{\omega_t}(V) \cap A$ and hence $card(A) = card(A \cap \beta cl_{\omega_t}(V))$ and for similar cause $card(A \cap U) = card(A \cap \beta cl_{\omega_t}(V))$. Therefore $card(A \cap U) =$ card(A). Hence x is a β -(ω_r, s)- θ_t -complete adherent point of A.

(iii) \Rightarrow (i). Let X be not $\beta_{(\omega_r,s)}^t$ -closed. Then Theorem 4.11 implies that X has a cover Σ by β - (ω_r, s) - θ_t -open sets of X without any finite subcover. Let ρ be the minimum of the cardinal numbers of the subcover

 Σ_0 of Σ . Then clearly $\rho \geq \aleph_0$. Let Σ_0 be well-ordered by minimal wellordering \prec . Then for each $U \in \Sigma_0$, $card(\{W \in \Sigma : W \prec U\}) < \rho$ and so $\{W \in \Sigma : W \prec U\}$ can not be a cover of X. Then for each $U \in \Sigma_0$, there exists $x_U \in X - \bigcup \{W \in \Sigma : W \prec U\}$. Now consider $P = \{x_U : U \in \Sigma_0\}$. Since $U, V \in \Sigma_0, U \neq V$ implies $x_U \neq x_V$, $card(P) = \rho$. So P is an infinite set. Now consider any $x \in X$. Then $x \in U_0$ for some $U_0 \in \Sigma_0$. Since $x_U \in U_0$ implies $U \prec U_0$. Therefore $\{U \in \Sigma_0 : x_U \in U_0\} \subset \{U \in \Sigma_0 : U \prec U_0\}$ and so by the minimality of \prec , we get $card(\{U \in \Sigma_0 : x_U \in U_0\}) < \rho$. Thus $card(A \cap U_0) < \rho =$ card(A). So x can not be β -(ω_r, s)- θ_t -complete adherent point of A. \Box

THEOREM 4.18. For a β -(ω_r, s)t-regular topological space X, the following three statements are equivalent:

(i) X is β_{ω} -closed,

(ii) every net $(x_{\lambda})_{\lambda \in \Upsilon}$, where Υ is a well-ordered index set β - ω - θ -adheres at a point in X,

(iii) every infinite subset A of X has a β - ω - θ -complete adherent point in X.

5. $\beta_{(\omega_r,s)}^t$ -closed spaces modulo grill

DEFINITION 5.1. A bitopological space X is called $\beta_{(\omega_r,s)}^t$ -closed (resp. H- $\beta_{(\omega_r,s)}^t$ -closed) modulo a grill \mathcal{G} if every (r,s)- β -open cover $\{V_{\alpha} : \alpha \in \Delta\}$ of X has finite subfamily $\{V_{\alpha_i} : \alpha_i \in \Delta, i = 1, 2, ..., n\}$ such that $X - \bigcup_{i=1}^n \beta c l_{\omega_t}(V_{\alpha_i}) \notin \mathcal{G}$ (resp. $X - \bigcup_{i=1}^n c l_{\omega_t}(V_{\alpha_i}) \notin \mathcal{G}$). If the topologies on X are taken the same, then $\beta_{(\omega_r,s)}^t$ -closedness (resp. H- $\beta_{(\omega_r,s)}^t$ -closedness) modulo a grill \mathcal{G} are referred as β_{ω} -closed (resp. H- β_{ω} -closed) modulo the grill \mathcal{G} respectively.

REMARK 5.2. Every $\beta^t_{(\omega_r,s)}$ -closed modulo any grill \mathcal{G} bitopological space X is $\beta^t_{(r,s)}$ -closed, $P^t_{(\omega_r,s)}$ -closedness [2] and H- $\beta^t_{(\omega_r,s)}$ -closed modulo the grill \mathcal{G} on X.

THEOREM 5.3. Every $\beta^t_{(\omega_r,s)}$ -closed (resp. $\beta^t_{(r,s)}$ -closed and H- $\beta^t_{(\omega_r,s)}$ closed) bitopological space X is $\beta^t_{(\omega_r,s)}$ -closed (resp. $\beta^t_{(r,s)}$ -closed and H- $\beta^t_{(\omega_r,s)}$ -closed) modulo any grill \mathcal{G} on X.

Proof. We prove the theorem for only $\beta_{(\omega_r,s)}^t$ -closedness. Other two are analogous. Let X be $\beta_{(\omega_r,s)}^t$ -closed and $\{U_\alpha : \alpha \in \Delta\}$ be any (r,s)- β -open cover of X. Then there exists a finite subset Δ_0 of Δ such that

 $X = \bigcup \{\beta cl_{\omega_t}(U_\alpha) : \alpha \in \Delta_0\}. \text{ Since } \emptyset \notin \mathcal{G}, X - \bigcup \{\beta cl_{\omega_t}(U_\alpha) : \alpha \in \Delta_0\} \notin \mathcal{G}.$

REMARK 5.4. It is obvious to note that if \mathcal{G} is the grill of all nonempty subsets of any topological space X, then the concepts of X being $\beta_{(\omega_r,s)}^t$ closed (resp. H- $\beta_{(\omega_r,s)}^t$ -closed) and $\beta_{(\omega_r,s)}^t$ -closed (resp. H- $\beta_{(\omega_r,s)}^t$ -closed) modulo the grill \mathcal{G} are equivalent.

THEOREM 5.5. Let \mathcal{G} be a grill on a topological space X containing all nonempty ω_t -open sets and X is H- $\beta^t_{(\omega_r,s)}$ -closed modulo the grill \mathcal{G} . Then X is H- $\beta^t_{(\omega_r,s)}$ -closed.

Proof. Let X be H- $\beta_{(\omega_r,s)}^t$ -closed modulo the grill \mathcal{G} and $\{U_\alpha : \alpha \in \Delta\}$ be a cover of X by the (r, s)- β -open sets of X. Then there exist finite number of indices $\alpha_1, \alpha_2, ..., \alpha_n \in \Delta$ such that $X - \bigcup_{i=1}^n cl_{\omega_t}(U_{\alpha_i}) \notin \mathcal{G}$. If $int_{\omega_t}(X - \bigcup_{i=1}^n (U_{\alpha_i})) \neq \emptyset$, then $int_{\omega_t}(X - \bigcup_{i=1}^n (U_{\alpha_i})) \in \mathcal{G}$. But $int_{\omega_t}(X - \bigcup_{i=1}^n (U_{\alpha_i})) = X - cl_{\omega_t}(\bigcup_{i=1}^n U_{\alpha_i}) = X - \bigcup_{i=1}^n cl_{\omega_t}(U_{\alpha_i})$. So $X - \bigcup_{i=1}^n cl_{\omega_t}(U_{\alpha_i}) \in \mathcal{G}$, — a contradiction. Hence $\emptyset = int_{\omega_t}(X - \bigcup_{i=1}^n cl_{\omega_t}(U_{\alpha_i})) = X - \bigcup_{i=1}^n cl_{\omega_t}(U_{\alpha_i})$. So X is H- $\beta_{(\omega_r,s)}^t$ -closed. \Box

DEFINITION 5.6. A topological space X is called weakly $\beta_{(\omega_r,s)}^t$ -closed (resp. strongly $\beta_{(\omega_r,s)}^t$ -closed, strongly (r,s)- β -compact) modulo a grill \mathcal{G} if every (r,s)- β -open (resp. (r,s)-open, (r,s)- β -open) cover $\{V_{\alpha} : \alpha \in \Delta\}$ of X has finite subfamily $\{V_{\alpha_i} : \alpha \in \Delta, i = 1, 2, ..., n\}$ such that $X - \bigcup_{i=1}^n int_{\omega_t}(V_{\alpha_i}) \notin \mathcal{G}$ (resp. $X - \bigcup_{i=1}^n \beta cl_{\omega_t}(V_{\alpha_i}) \notin \mathcal{G}, X - \bigcup_{i=1}^n V_{\alpha_i} \notin \mathcal{G}$). If the topologies on X are taken the same, then weakly $\beta_{(\omega_r,s)}^t$ -closed (resp. strongly $\beta_{(\omega_r,s)}^t$ -closed, strongly (r,s)- β -compact) modulo a grill \mathcal{G} are referred as weakly β - ω -closed (resp. strongly β - ω -closed, strongly β -compact) modulo a grill \mathcal{G} modulo the grill \mathcal{G} .

DEFINITION 5.7. A topological space X is called strongly $\beta_{(\omega_r,s)}^t$ regular modulo a grill \mathcal{G} if for each $x \in X$ and (r,s)- β -closed set Fnot containing x there exist disjoint sets $U \in (r,s)\beta O(X,x)$ and $V \in \beta \omega_t O(X)$ such that $F - V \notin \mathcal{G}$. If the topologies on X are taken as the same, the space strongly $\beta_{(\omega_r,s)}^t$ -regular modulo a grill \mathcal{G} is referred as strongly β - ω -regular modulo the grill \mathcal{G}

THEOREM 5.8. A $\beta_{(\omega_r,s)}^t$ -closed strongly $\beta_{(\omega_r,s)}^t$ -regular bitopological space modulo a grill \mathcal{G} is strongly (r,s)- β -compact modulo the grill \mathcal{G} .

Proof. Let $\{U_{\alpha} : \alpha \in \Delta\}$ is a cover of X by (r, s)- β -open sets of X. Then for each $x \in X$, there exists $\alpha(x) \in \Delta$ such that $x \in U_{\alpha(x)}$. Since X is strongly $\beta_{(\omega_r,s)}^t$ -regular modulo the grill \mathcal{G} , there exist disjoint sets $P_{\alpha(x)} \in (r, s)\beta O(X, x)$ and $Q_{\alpha(x)} \in \beta \omega_t O(X)$ such that $(X - U_{\alpha(x)}) - Q_{\alpha(x)} \notin \mathcal{G}$. Here $\{P_{\alpha(x)} : x \in X\}$ is a cover of X by (r, s)- β -open sets of X. Since X is $\beta_{(\omega_r,s)}^t$ -closed, there exist $x(1), x(2), ..., x(n) \in X$ such that $X = \bigcup_{i=1}^n \beta c l_{\omega_t} (P_{\alpha(x(i))})$. Consider $S_{\alpha(x)} = (X - U_{\alpha(x)}) - Q_{\alpha(x)}$. Here $P_{\alpha(x)} \cap Q_{\alpha(x)} = \emptyset$ implies that $\beta c l_{\omega_t} (P_{\alpha(x)}) \cap Q_{\alpha(x)} = \emptyset$. Now we claim that $\beta c l_{\omega_t} (P_{\alpha(x)}) \subset S_{\alpha(x)} \cup U_{\alpha(x)}$. In fact $q \in \beta c l_{\omega_t} (P_{\alpha(x)})$ but $q \notin U_{\alpha(x)}$ implies that $q \in X - Q_{\alpha(x)}$ and so $q \in ((X - U_{\alpha(x)}) - Q_{\alpha(x)}) = S_{\alpha(x)}$. Thus $X = \bigcup_{i=1}^n \beta c l_{\omega_t} (P_{\alpha(x(i))}) \subset \bigcup_{i=1}^n (S_{\alpha(x(i))}) \cup U_{\alpha(x(i))})$ and so $X - \bigcup_{i=1}^n U_{\alpha(x(i))} \subset \bigcup_{i=1}^n (S_{\alpha(x(i))})$. But for each $i = 1, 2, ..., n, S_{\alpha(x(i))} \notin \mathcal{G}$ and so $X - \bigcup_{i=1}^n U_{\alpha(x(i))} \notin \mathcal{G}$. Hence X is strongly (r, s)- β -compact modulo the grill \mathcal{G} .

THEOREM 5.9. A β_{ω} -closed strongly β - ω -regular topological space modulo a grill \mathcal{G} is strongly β -compact modulo the grill \mathcal{G} .

THEOREM 5.10. A T_2 weakly β_{ω} -closed space (X, τ) modulo a grill \mathcal{G} is strongly β - ω -regular modulo the grill \mathcal{G} .

Proof. Consider $x \in X$ and β -closed set F not containing x. Then for each $y \in F$, there exist disjoint open sets U_y and V_y containing xand y respectively. Therefore $\{V_y : y \in F\} \cup \{X - F\}$ is a β -open cover of X. Since X is weakly β_{ω} -closed space modulo the grill \mathcal{G} , there exist $y_1, y_2, ..., y_n \in F$ such that $X - [\bigcup_{i=1}^n int_{\omega}(V_{y_i}) \cup int_{\omega}(X - F))] \notin \mathcal{G}$. Now consider $U = X - \beta cl(\bigcup_{i=1}^n (V_{y_i}))$ and $V = \bigcup_{i=1}^n (V_{y_i})$. Then $U \cap V = \emptyset$, $U \in \beta O(X, x), V \in \beta O(X) \subset \beta \omega O(X)$ and $F - V = F \cap (X - V) =$ $X - [\bigcup_{i=1}^n (V_{y_i}) \cup (X - F))] \subset X - [\bigcup_{i=1}^n int_{\omega}(V_{y_i}) \cup int_{\omega}(X - F))]$ and so $F - V \notin \mathcal{G}$. Hence X is strongly β - ω -regular modulo the grill \mathcal{G} . \Box

Let \mathcal{G} be a grill on a topological space (X, τ) and $\phi : P(X) \to P(X)$ be a mapping defined by $\phi(A) = \{x \in X : U \cap A \in \mathcal{G}, \text{ for all } U \in \tau(x)\}$. B. Roy and M. N. Mukherjee [10] has proved that $\psi : P(X) \to P(X)$, where $\psi(A) = A \cup \phi(A)$ for all $A \in P(X)$, is a Kuratowski closure operator and hence induces a topology τ_G on X finer than τ .

THEOREM 5.11. Let \mathcal{G} be a grill on a topological space (X, τ) and X is strongly β -compact modulo the grill \mathcal{G} . Then $(X, \tau_{\mathcal{G}})$ is strongly β - ω -closed modulo the grill \mathcal{G} .

Proof. Let X be strongly β -compact modulo the grill \mathcal{G} and consider \sum be a cover of X by open sets of $(X, \tau_{\mathcal{G}})$. Then for each $x \in X$, there

exists $U_x \in \sum$ such that $x \in U_x$. Then there exist a $B_x \in \tau$ and a $V_x \notin \mathcal{G}$ such that $x \in B_x - V_x \subset U_x$. Then $\{B_x : x \in X\}$ is cover of X by open (and so β -open) sets of the space (X, τ) . Since (X, τ) is strongly β -compact modulo the grill \mathcal{G} , there exist $x(1), x(2), ..., x(n) \in X$ such that $X - \bigcup_{i=1}^n B_{x(i)} \notin \mathcal{G}$. Now $X - \bigcup_{i=1}^n \beta cl_{\omega}^{\tau_{\mathcal{G}}}(U_{x(i)}) \subset X - \bigcup_{i=1}^n U_{x(i)} \subset X - \bigcup_{i=1}^n (B_{x(i)} - V_{x(i)}) \subset (X - \bigcup_{i=1}^n (B_{x(i)})) \cup (\bigcup_{i=1}^n (V_{x(i)})) \notin \mathcal{G}$. Hence $(X, \tau_{\mathcal{G}})$ is strongly β - ω -closed modulo the grill \mathcal{G} .

THEOREM 5.12. Let \mathcal{G} be a grill on X. A bitopological space X is $\beta^t_{(\omega_r,s)}$ -closed with respect to the grill \mathcal{G} if and only if every β - (ω_r, s) - θ_t -closed subset of X is $\beta^t_{(\omega_r,s)}$ -closed with respect to the grill \mathcal{G} and X.

Proof. Let X be β^t_(ωr,s)-closed with respect to the grill \mathcal{G} and A be a β-(ω_r, s)-θ_t-closed subset of X and let $\Sigma = \{V_{\alpha} : \alpha \in \Delta\}$ is a cover of A by (r, s)-β-open sets of X. Since X - A is a β-(ω_r, s)-θ_t-open set, for each $x \in X - A$, by the Lemma 3.6, there exists $U_x \in (r,s)\beta O(X,x)$ such that $\beta cl_{\omega_t}(U_x) \subset X - A$. Hence $\Sigma \cup \{U_x : x \in X - A\}$ is a (r,s)-βopen cover of X and so there exist $\alpha_1, \alpha_2, ..., \alpha_n \in \Delta$ and $x_1, x_2, ..., x_m \in$ X - A such that $X - ((\bigcup_{i=1}^n \beta cl_{\omega_t}(V_{\alpha_i})) \cup (\bigcup_{i=1}^m \beta cl_{\omega_t}(U_{x_i}))) \notin \mathcal{G}$. So A - $\bigcup_{i=1}^n \beta cl_{\omega_t}(V_{\alpha_i}) = A - ((\bigcup_{i=1}^n \beta cl_{\omega_t}(V_{\alpha_i})) \cup (X - A))) \subset A - ((\bigcup_{i=1}^n \beta cl_{\omega_t}(V_{\alpha_i})) \cup$ $(\bigcup_{i=1}^m \beta cl_{\omega_t}(U_{x_i}))) \subset X - ((\bigcup_{i=1}^n \beta cl_{\omega_t}(V_{\alpha_i})) \cup (\bigcup_{i=1}^m \beta cl_{\omega_t}(U_{x_i}))) \notin \mathcal{G}$. Therefore $A - \bigcup_{i=1}^n \beta cl_{\omega_t}(V_{\alpha_i}) \notin \mathcal{G}$ and hence A is $\beta^t_{(\omega_r,s)}$ -closed with respect to the grill \mathcal{G} and X. Again since X is β -(ω_r, s)- θ_t -closed subset of X, the converse part of the theorem is obvious. □

References

- M. E. Abd El-Monsef, S. N. El-Deeb, and R. A. Mahmoud, β-open sets and β-continuous mappings, Bull. Fac. Sci. Assiut Univ., 12 (1983), no. 1, 77-90.
- [2] B. M. Uzzal Afsan and C. K. Basu, P^t_(ω_r,s)-closedness modulo grill and P^{θ_t}_(ω_r,s)perfect functions, J. Adv. Res. Appl. Math., 7 (2015), no. 1, 1-11.
- [3] B. M. Uzzal Afsan and C. K. Basu, $P_{(\omega_r,s)}^t$ -closed spaces and pre- $(\omega_r, s)t$ - θ_f cluster sets, Commun. Korean Math. Soc., **26** (2011), no. 1, 135-149.
- [4] C. K. Basu and B. M. Uzzal Afsan, P_ω-Closedness and its generalization with respect to a grill, Sarajevo J. Math., 7 (2011), no. 2, 297-309.
- [5] H. Z. Hdeib, ω-closed mappings, Rev. Colomb. Mat., 16 (1982), no. 3-4 65-78.
- [6] H. Z. Hdeib, ω -continuous functions, Dirasat., 16 (1989), no. 2, 136-142.
- [7] M. Jelić, A decomposition of pairwise continuity, J. Inst. Math. Comput. Sci. Math. Ser., 3 (1990), 25-29.
- [8] J. C. Kelly, *Bitopological spaces*, Proc. London Math. Soc., 3 (1963), no. 13, 71-89.

- [9] F. H. Khedr, S. M. Al-Areefi, and Noiri T., Precontinuity and semi-precontinuity in bitopological spaces, Indian J.Pure Appl.Math., 23 (1992), 625-633.
- [10] M. N. Mukherjee and B. Roy, p-closed topological spaces in terms of grills, Hacettepe J. Math. Stat., 35 (2006), no. 2, 147-154.
- [11] T. Noiri, A. A. Omari, and M. S. M. Noorani, Weak forms of ω-open sets and decompositions of continuity, European J. of Pure and Appl. Math., 2 (2009), no. 1, 73-84.
- [12] T. Noiri, A. A. Omari, and M. S. M. Noorani, Slightly ω -continuous functions, Fasciculi Mathematica., **41** (2009), 97-106.
- [13] A. A. Omari and M. S. M. Noorani, Contra-ω-continuous and almost contraω-continuous, Internat. J. Math. Math. Sci., 2007. Art. ID 40469, 13 pages. doi:10.1155/2007/40469.
- [14] A. A. Omari and M. S. M. Noorani, Regular generalized ω-closed sets, Internat. J. Math. Math. Sci., 2007. Art. ID 16292, 11 pages, doi: 10.1155/2007/16292.
- [15] W. J. Thron, Proximity structure and grills, Math. Ann., 206 (1973), 35-62.
- [16] K. Al-Zoubi and B. Al-Nashef, The topology of ω-open subsets, Al-Manarah., 9 (2003), no. 2, 169-179.

*

Department of Mathematics Sripat Singh College Jiaganj 742123, Murshidabad, West Bengal, India *E-mail*: uzlafsan@gmail.com