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RELATION BETWEEN DIOPHANTINE TRIPLE AND

ELLIPTIC CURVE

Jinseo Park

Abstract. A set {a1, a2, . . . , am} of positive integers is called Dio-
phantine m-tuple if aiaj+1 is a perfect square for all 1 ≤ i < j ≤ m.
In this paper, we find the structure of torsion group of elliptic curve
Ek constructed by Diophantine triple, and find all integer points on
Ek under assumption that rank(Ek(Q)) = 1.

1. Introduction

A Diophantine m-tuple is a set of m distinct positive integers with
the property that the product of any two of its distinct elements is
one less than a square. For example, the first Diophantine quadruple
{1, 3, 8, 120} was found by Fermat[2]. We can easily find that the set
satisfies the property, indeed

1 · 3 + 1 = 22, 1 · 8 + 1 = 32, 1 · 120 + 1 = 112,

3 · 8 + 1 = 52, 3 · 120 + 1 = 192, 8 · 120 + 1 = 312.

For the rational case, Diophantus first found that the set

{1/16, 33/16, 17/4, 105/16}

satisfies the same property. If a set of nonzero rationals has the same
property then it is called rational Diophantine m-tuple. Euler found
that the Fermat’s set is extended to rational Diophantine quintuple

{1, 3, 8, 120, 777480/8288641}.
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There are lots of papers related to Diophantine m-tuple, but we have
many problems which still remain open. The most interesting subject is
the extendibility of Diophantine m-tuple.

For any Diophantine triple {a, b, c} with a < b < c, the set {a, b, c, d±}
is a Diophantine quadruple, where

d± = a+ b+ c+ 2abc± 2rst

and r, s, t are the positive integers satisfying

ab+ 1 = r2, ac+ 1 = s2, bc+ 1 = t2.

A folklore conjecture was that there does not exist a Diophantine
quintuple. Recently, the conjecture has been proved by He, Togbé and
Ziegler [10]. The strong version of this conjecture states that if {a, b, c, d}
is a Diophantine quadruple and d > max{a, b, c} then d = d+. These
Diophantine quadruples are called regular. Recently, He, Pu, Shen and
Togbé proved the regularity of Diophantine quadruple

{k, 4k + 4ε, c, d},
where ε = {±1} in [9].

The reason why the extendibility should be considered is related to
the elliptic curves. We must solve the equations

ax+ 1 = �, bx+ 1 = �, cx+ 1 = �

to extend the the Diophantine triple {a, b, c} to Diophantine quadruple.
According to these three equations, we have the elliptic curve

E : y2 = (ax+ 1)(bx+ 1)(cx+ 1).

Then we have always the integer points

(0,±1), (d+,±(at+rs)(bs+rt)(cr+st)), (d−,±((at−rs)(bs−rt)(cr−st))),
and also (−1, 0) if 1 ∈ {a, b, c}. The non-extendiblity of Diophantine
m-tuple suggests that there are no other integer points on E. Let us
consider the Diophantine pair {1, 3}. If the set {1, 3, c} is a Diophantine
triple then the third element c should have the form

ck =
1

6
[(2 +

√
3)(7 + 4

√
3)k + (2−

√
3)(7− 4

√
3)k − 4].

Dujella and Pethö[5] proved that the elliptic curve

Ek : y2 = (x+ 1)(3x+ 1)(ckx+ 1)

has integer points

x ∈ {−1, 0, ck−1, ck+1}
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under assumption that rank(Ek(Q)) = 2. There are various papers
which contain the similar results [3, 4, 6, 8, 14, 15, 16]. Hence, it is
important not only how to prove the extendibility of Diophantine m-
tuple but also which case of Diophantine m-tuple is proved.

It is obvious that every solution of system

ax+ 1 = �, bx+ 1 = �, cx+ 1 = �

induces an integer point on the elliptic curve E. It is natural to ask which
points on the curve satisfy the original system of equations and give
extensions to Diophantine quadruples. The purpose of this paper is to
prove that the converse of this statement is true under some conditions.
Actually, we find the structure of torsion subgroup and all integer points
on the elliptic curves

y2 = (kx+ 1)((4k + 4)x+ 1)((9k + 6)x+ 1)

under assumption that the rank of elliptic curve is 1.

2. Preliminaries

2.1. The form of third element in the Diophantine triple

Let {a, b, c} be a Diophantine triple, and r, s, t be the positive integers
satisfying ab+1 = r2, ac+1 = s2, bc+1 = t2. Then we have the equation

at2 − bs2 = a− b.
Let ν be a positive integer. The solution of equation above is

(t
√
a+ s

√
b) = (t0

√
a+ s0

√
b)(r +

√
bc)ν .

If (t0, s0) belongs to the same class as either of the solutions (±1, 1) then
s can be expressed as s = sτν , where τ ∈ {±1} and

s0 = sτ0 = 1, sτ1 = r + τa, sτν+2 = 2rsτν+1 − sτν .

Define cτν = ((sτν)2 − 1)/a. Then, we obtain

c = cτν =
1

4ab
[(a+ b+ 2τ

√
ab)(2ab+ 1 + 2r

√
ab)ν

+(a+ b− 2τ
√
ab)(2ab+ 1− 2r

√
ab)ν − 2(a+ b)].

Let us consider the form of third element c in the Diophantine triple
{a, b, c}.

Lemma 2.1. [7, Lemma 4.1] Let {a, b, c} be a Diophantine triple.
Assume that a < b ≤ 8a. Then c = cτν for some ν and τ .
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According to Lemma 2.1 and regularity of Diophantine quadruple
{k, 4k + 4ε, c, d}, if {k, 4k + 4, c, d} is a Diophantine quadruple with
c < d then d has to be d+. Recently, the upper bound of b is more
generalized. The following lemma is the result.

Lemma 2.2. [13, Lemma 3.1] Let {a, b, c} be a Diophantine triple and
a < b ≤ 24a. Suppose that {1, 3, a, b} is not a Diophantine quadruple.
Then c = cτν for some n and τ .

2.2. Points on the elliptic curve

Let {a, b, c} be a Diophantine triple. We have to solve the system

(2.1) ax+ 1 = �, bx+ 1 = �, cx+ 1 = �

to extend the Diophantine triple to quadruple. According to this system,
we have the following elliptic curve

E : y2 = (ax+ 1)(bx+ 1)(cx+ 1).

It is natural to ask which points on E can be a solution of system (2.1).
The answer is given in the following proposition with P = (0, 1) ∈ E(Q).

Proposition 2.3. [4, Proposition 1] The x-coordinate of the point
T ∈ E(Q) satisfies (2.1) if and only if T − P ∈ 2E(Q).

The following proposition is called 2-descent proposition, which can
confirm T ∈ 2E(Q).

Proposition 2.4. [11, 4.1, p.37], [12, 4.2, p.85] Let P = (x′, y′) be a
Q-rational point on E, an elliptic curve over Q given by

y2 = (x− α)(x− β)(x− γ),

where α, β, γ ∈ Q. Then there exists a Q-rational point Q = (x, y) on
E such that 2Q = P iff x′ − α, x′ − β, x′ − γ are all Q-rational squares.

2.3. Torsion group

Let EQ(M,N) be the elliptic curve defined by

y2 = x3 + (M +N)x2 +MNx.

Then we can find that the torsion group is classified according to the
following theorem.

Theorem 2.5. [17, Main Theorem 1] The torsion subgroups of EQ(M,N)
are uniquely determined by :
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• The torsion subgroup of EQ(M,N) contains Z2 × Z4 if M and N
are both squares, or −M and N −M are both squares, or if −N
and M −N are both squares.
• The torsion subgroup of EQ(M,N) is Z2×Z8 if there exists a non-

zero integer d such that M = d2u4 and N = d2v4, or M = −d2v4
and N = d2(u4 − v4), or M = d2(u4 − v4) and N = −d2v4 where
(u, v, w) forms a Pythagorean triple (i.e. u2 + v2 = w2).
• The torsion subgroup of EQ(M,N) is Z2×Z6 if there exists integers
a and b such that

a

b
/∈ {−2,−1,−1

2
, 0, 1}

and M = a4 + 2a3b and N = 2ab3 + b4.
• In all other cases, the torsion subgroup of EQ(M,N) is Z2 × Z2.

The coordinate transformation

x→ x

abc
, y → y

abc
applied on the curve E leads to the elliptic curve

E′ : y2 = (x+ bc)(x+ ac)(x+ ab).

The following Theorem is used to be more specific.

Theorem 2.6. [4, Theorem 2]

E′(Q)tors ∼= Z/2Z× Z/2Z or Z/2Z× Z/6Z.

3. Torsion group of the elliptic curve

We get the following elliptic curve

Ek : (kx+ 1)((4k + 4)x+ 1)((9k + 6)x+ 1)

by Diophantine triple {k, 4k+4, 9k+6}. The coordinate transformation

x↔ x

k(4k + 4)(9k + 6)
, y ↔ y

k(4k + 4)(9k + 6)

applied on the curve Ek leads to the elliptic curve

E′k : y2 = (x+ (4k + 4)(9k + 6))(x+ k(9k + 6))(x+ k(4k + 4)).

There are three integer points on E′k

A′k = (−(4k+4)(9k+6), 0), B′k = (−k(9k+6), 0), C ′k = (−k(4k+4), 0).

These points have order 2. Also, there is another point

P ′k = (0, k(4k + 4)(9k + 6)),
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which is not of finite order. First, let us find the structure of torsion
group of E′k. By using the Theorem 2.5 and Theorem 2.6, we can find
the answer.

Lemma 3.1. The torsion group E′k(Q)tors is isomorphic to Z2 × Z2.

Proof. It is sufficient to show that the torsion group E′k(Q)tors is
not isomorphic to Z2 × Z6. Let α and β be the integers satisfying the
properties

α

β
/∈ {−2,−1,−1

2
, 0, 1},

M = k(5k + 2) = α4 + 2α3β and N = 8(k + 1)(4k + 3) = 2αβ3 + β4.
Then we get the equation

(3.1) M +N = 37k2 + 58k + 24 = (α2 + αβ + β2)2 − 3α2β2.

Then the right side of equation (3.1) is congruent to 0, 1, 5 or 6 modulo
8. Especially, the right side is congruent to 0 modulo 8 when α, β are
both even. Therefore,

α4 + 2α3β ≡ 0 (mod 16), 2αβ3 + β4 ≡ 0 (mod 16).

Let us consider the left side of equation (3.1). The left side is congru-
ent to 0, 3 or 7 modulo 8. Especially, the left side is congrunet to 0 mod-
ulo 8 when k is an even. First, if k ≡ 0, 6, 8, 14 (mod 16) then N ≡ 8
(mod 16). Next, if k ≡ 2, 4, 10, 12 (mod 16) then M ≡ 8 (mod 16),
which is a contradiction. Hence, we have the desired result.

Since we already get the points of order 2, we have the following
result.

Corollary 3.2. E′k(Q)tors = {O,A′k, B′k, C ′k}.

Corollary 3.3. rank(E′k(Q)) ≥ 1.

Proof. The point P ′k = (0, k(4k + 4)(9k + 6)) is not of finite order.
Hence, rank(E′k(Q)) ≥ 1 by Lemma 3.1.

4. Integer points on elliptic curve

In this section, we find the integer points on E′k under assumption
that rank(E′k(Q)) = 1.

Lemma 4.1. P ′k, P
′
k +A′k, P

′
k +B′k, P

′
k + C ′k /∈ 2E′k(Q).
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Proof. We have

x(P ′k) = 0,

x(P ′k +A′k) = −2k(6k + 5),

x(P ′k +B′k) = −8(k + 1)(3k + 1),

x(P ′k + C ′k) = 6(2k + 1)(3k + 2).

• The case P ′k
If P ′k ∈ 2E′k(Q) then k(4k+ 4) = (2k+ 1)2 − 1 is a perfect square,
which is a contradiction. Therefore, P ′k /∈ 2E′k(Q).

• The cases P ′k +A′k and P ′k +B′k
If P ′k +A′k and P ′k +B′k ∈ 2E′k(Q) then

−2(4k + 3) and − (5k + 2)(3k + 4)

are perfect squares, respectively. These are also contradictions
since they are negative numbers. Therefore, P ′k + A′k, P

′
k + B′k /∈

2E′k(Q).

• The case P ′k + C ′k
If P ′k + C ′k ∈ 2E′k(Q) then

(5k + 2)(3k + 2) = 3�, (5k + 2)(4k + 3) = 2�.

Let d = gcd(5k+ 2, 4k+ 3). Then we obtain d ∈ {1, 7}. Hence, we
conclude that

3k + 2 = 6� and 3k + 2 = 42�.

This is a contradiction, since both left sides are congruent to 2
modulo 3, but both right sides are congruent to 0.

Let E′k(Q)/E′k(Q)tors =< U > and X ∈ E′k(Q). Then we can rep-
resent X in the form X = mU + T , where m is an integer and T is a
torsion point, that is T ∈ {O,A′k, B′k, C ′k}. Similarly, P ′k = mPU + TP
for an integer mP and a torsion point TP . By Lemma 4.1, mP is an odd.
Therefore, we have X ≡ X1 (mod 2E′k(Q)), where

X1 ∈ S = {O,A′k, B′k, C ′k, P ′k, P ′k +A′k, P
′
k +B′k, P

′
k + C ′k}.
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Let {a, b, c} = {k− 1, k+ 1, 4k(2k+ 1)(2k− 1)}. From [12, 4.6, p.89],
the function ϕ : E′k(Q)→ Q∗/Q∗2 defined by

ϕ(X) =

 (x+ bc)Q∗2 if X = (x, y) 6= O, (−bc, 0),
(ac− bc)(ab− bc)Q∗2 if X = (−bc, 0),
Q∗2 if X = O

is a group homomorphism. Therefore, we have to solve in integers all
systems of the form

(4.1) kx+ 1 = α�, (4k + 4)x+ 1 = β�, (9k + 6)x+ 1 = γ�,

where for X1 = (k(4k+4)(9k+6)u, k(4k+4)(9k+6)v) ∈ S, the numbers
α, β, γ are defined by

α = ku+ 1, β = (4k + 4)u+ 1, γ = (9k + 6)u+ 1

if all of these three expressions are nonzero, and satisfy the following
condition.  α = βγ if ku+ 1 = 0,

β = αγ if (4k + 4)u+ 1 = 0,
γ = αβ if (9k + 6)u+ 1 = 0.

Using these facts and Theorem 2.1, we get the following theorem.

Theorem 4.2. Let k be a positive integer. If rank(Ek(Q)) = 1 then
the x-coordinates of all integer points on the elliptic curve

Ek : (kx+ 1)((4k + 4)x+ 1)((9k + 6)x+ 1)

are given by

x ∈ {−1, 0, 144k3 + 240k2 + 124k + 20}.

Proof. Let us consider that for X1 = P ′k. Then we obtain the system

kx+ 1 = �, (4k + 4)x+ 1 = �, (9k + 6)x+ 1 = �,

which is solved in [9]. Hence, we have to prove that the system (4.1) has
no integer solution for X1 ∈ S\{P ′k}.
For X1 ∈ {A′k, B′k, P ′k +A′k, P

′
k +B′k} exactly two of the numbers α, β, γ

are negative and accordingly the system (4.1) has no integer solution.
Therefore, we have to check three cases.

• The cases X1 = O
For X1 = O the system (4.1) becomes kx+ 1 = (k + 1)(9k + 6)�,

(4k + 4)x+ 1 = k(9k + 6)�,
(9k + 6)x+ 1 = k(k + 1)�.
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Then we have a contradiction, since the left side of second equation
is congruent to 1 modulo 4, but the right side is congruent to 0, 2
or 3 modulo 4. Therefore, the system has no integer solution.
• The case X1 = C ′k

For X1 = C ′k the system (4.1) becomes kx+ 1 = (8k + 6)(9k + 6)�,
(4k + 4)x+ 1 = (5k + 2)(9k + 6)�,
(9k + 6)x+ 1 = (5k + 2)(8k + 6)�.

The left side of third equation is congruent to 1 modulo 3, but the
right side is congruent to 0 or 2 modulo 3, which is a contradiction.
Therefore, we have the desired result.
• The case X1 = P ′k + C ′k

For X1 = P ′k + C ′k the system (4.1) becomes kx+ 1 = (4k + 4)(8k + 6)�,
(4k + 4)x+ 1 = k(5k + 2)�,
(9k + 6)x+ 1 = k(4k + 4)(5k + 2)(8k + 6)�.

Similar as before, we obtain a contradiction. The left side of second
equation is congruent to 1 modulo 4, but the right side is congruent
to 0, 2 or 3 modulo 4. Therefore, all cases have no integer solution,
and we proved the theorem.

Remark 4.3. As coefficients of Ek grow exponentially, computation
of the rank of Ek for large k is difficult. The above values of rank(Ek(Q))
are computed using the programs SIMATH([18]) and mwrank([1]).

Table 1. Results from rank (Ek(Q)) for small k

Case of k Ek(Q) rank(Ek(Q))

k = 1 y2 = 120x3 + 143x2 + 24x+ 1 1

k = 2 y2 = 576x3 + 360x2 + 38x+ 1 1

k = 3 y2 = 1584x3 + 675x2 + 52x+ 1 1

k = 4 y2 = 3360x3 + 1088x2 + 66x+ 1 2

k = 5 y2 = 6120x3 + 1599x2 + 80x+ 1 2

k = 6 y2 = 10080x3 + 2208x2 + 94x+ 1 2

k = 7 y2 = 15456x3 + 2915x2 + 108x+ 1 1
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