DOI QR코드

DOI QR Code

The Antiproliferation Activity of Ganoderma formosanum Extracts on Prostate Cancer Cells

  • Chiang, Cheng-Yen (Division of Urology, Department of Surgery, Taoyuan General Hospital, Ministry of Health and Welfare) ;
  • Hsu, Kai-Di (Institute of Biotechnology, National Taiwan University) ;
  • Lin, Yen-Yi (Institute of Biotechnology, National Taiwan University) ;
  • Hsieh, Chang-Wei (Department of Food Science and Biotechnology, National Chung Hsing University) ;
  • Liu, Jui-Ming (Division of Urology, Department of Surgery, Taoyuan General Hospital, Ministry of Health and Welfare) ;
  • Lu, Tze-Ying (Department of Internal Medicine, Taipei Medical University-Shuang Ho Hospital) ;
  • Cheng, Kuan-Chen (Institute of Biotechnology, National Taiwan University)
  • Received : 2019.01.02
  • Accepted : 2020.03.15
  • Published : 2020.06.30

Abstract

Androgen-independent prostate cancer accounts for mortality in the world. In this study, various extracts of a medical fungus dubbed Ganoderma formosanum were screened for inhibition of DU145 cells, an androgen-independent prostate cancer cell line. Results demonstrated that both hexane (GF-EH) and butanol (GF-EB) fraction of G. formosanum ethanol extract inhibited DU145 cell viability in a dose-dependent manner. GF-EH induced cell-cycle arrest in G1 phase of DU145 cells via downregulation of cyclin E2 protein expression. In addition, GF-EB triggered extrinsic apoptosis of DU145 cells by activating caspase 3 gene expression resulting in programed cell death. Above all, both GF-EH and GF-EB show lower toxicity to normal human fibroblast cell line compared to DU145 cell, implying that they possess specific drug action on cancer cells. This study provides a molecular basis of G. formosanum extract as a potential ingredient for treatment of androgen-independent prostate cancer.

Keywords

References

  1. Siegel RL, Miller KD, Fedewa SA et al. Colorectal cancer statistics. CA Cancer J Clin. 2017;67(3):177-193. https://doi.org/10.3322/caac.21395
  2. Huang S-Y, Huang G-J, Wu H-C, et al. Ganoderma tsugae inhibits the SREBP-1/AR axis leading to suppression of cell growth and activation of apoptosis in prostate cancer cells. Molecules. 2018;23(10):2539. https://doi.org/10.3390/molecules23102539
  3. Qu L, Li S, Zhuo Y, et al. Anticancer effect of triterpenes from Ganoderma lucidum in human prostate cancer cells. Oncol Lett. 2017;14(6):7467-7472.
  4. Hsu K-D, Cheng K-C. From nutraceutical to clinical trial: frontiers in ganoderma development. Appl Microbiol Biotechnol. 2018;102(21):9037-9051. https://doi.org/10.1007/s00253-018-9326-5
  5. Wu G-S, Guo J-J, Bao J-L, et al. Anti-cancer properties of triterpenoids isolated from Ganoderma lucidum-a review. Expert Opin Invest Drugs. 2013;22(8):981-992. https://doi.org/10.1517/13543784.2013.805202
  6. Johnson BM, Doonan BP, Radwan FF, et al. Ganoderic acid DM: an alternative agent for the treatment of advanced prostate cancer. Open Prost Cancer J. 2010; 3:78-85. https://doi.org/10.2174/1876822901003010078
  7. Liu J, Shimizu K, Konishi F, et al. The anti-androgen effect of ganoderol B isolated from the fruiting body of Ganoderma lucidum. Bioorg Med Chem. 2007;15(14):4966-4972. https://doi.org/10.1016/j.bmc.2007.04.036
  8. Zaidman B-Z, Wasser SP, Nevo E, et al. Androgen receptor-dependent and-independent mechanisms mediate Ganoderma lucidum activities in LNCaP prostate cancer cells. Int J Oncol. 2007;31(4):959-967.
  9. Hsu K-D, Chen H-J, Wang C-S, et al. Extract of Ganoderma formosanum mycelium as a highly potent tyrosinase inhibitor. Sci Rep. 2016;6:32854. https://doi.org/10.1038/srep32854
  10. Hsu K-D, Chan Y-H, Chen H-J, et al. Tyrosinasebased TLC autography for anti-melanogenic drug screening. Sci Rep. 2018;8(1):401. https://doi.org/10.1038/s41598-017-18720-0
  11. Hsu K-D, Wu S-P, Lin S-P, et al. Enhanced active extracellular polysaccharide production from Ganoderma formosanum using computational modeling. J Food Drug Anal. 2017;25(4):804-811. https://doi.org/10.1016/j.jfda.2016.12.006
  12. Zaidman B-Z, Wasser SP, Nevo E, et al. Coprinus comatus and Ganoderma lucidum interfere with androgen receptor function in LNCaP prostate cancer cells. Mol Biol Rep. 2008;35(2):107-117. https://doi.org/10.1007/s11033-007-9059-5
  13. Kao CH, Bishop KS, Xu Y, et al. Identification of potential anticancer activities of novel Ganoderma lucidum extracts using gene expression and pathway network analysis. Genomics Insights. 2016;9:GEI. S32477.
  14. Wang C-L, Lu C-Y, Hsueh Y-C, et al. Activation of antitumor immune responses by Ganoderma formosanum polysaccharides in tumor-bearing mice. Appl Microbiol Biotechnol. 2014;98(22):9389-9398. https://doi.org/10.1007/s00253-014-6027-6
  15. Litwin MS, Tan HJ. The diagnosis and treatment of prostate cancer: a review. JAMA. 2017;317(24):2532-2542. https://doi.org/10.1001/jama.2017.7248
  16. Zhu M, Zheng Z, Huang J, et al. Modulation of miR-34a in curcumin-induced antiproliferation of prostate cancer cells. J Cell Biochem. 2019;120(9):15616-15624. https://doi.org/10.1002/jcb.28828
  17. Cao Y, Xu X, Liu S, et al. Ganoderma: a cancer immunotherapy review. Front Pharmacol. 2018;9:1217. https://doi.org/10.3389/fphar.2018.01217
  18. Zhang JH, Xu M. DNA fragmentation in apoptosis. Cell Res. 2000;10(3):205-211. https://doi.org/10.1038/sj.cr.7290049
  19. Ouyang L, Shi Z, Zhao S, et al. Programmed cell death pathways in cancer: a review of apoptosis, autophagy and programmed necrosis. Cell Prolif. 2012;45(6):487-498. https://doi.org/10.1111/j.1365-2184.2012.00845.x
  20. Hsin I-L, Ou C-C, Wu M-F, et al. GMI, an immunomodulatory protein from Ganoderma microsporum, potentiates cisplatin-induced apoptosis via autophagy in lung cancer cells. Mol Pharmaceutics. 2015;12(5):1534-1543. https://doi.org/10.1021/mp500840z
  21. Dan X, Liu W, Wong JH, et al. A ribonuclease isolated from wild Ganoderma lucidum suppressed autophagy and triggered apoptosis in colorectal cancer cells. Front Pharmacol. 2016;7:217.
  22. Takahashi A, Kimura F, Yamanaka A, et al. Metformin impairs growth of endometrial cancer cells via cell cycle arrest and concomitant autophagy and apoptosis. Cancer Cell Int. 2014;14(1):53. https://doi.org/10.1186/1475-2867-14-53
  23. Smith ML, Murphy K, Doucette CD, et al. The dietary flavonoid fisetin causes cell cycle arrest, caspase-dependent apoptosis, and enhanced cytotoxicity of chemotherapeutic drugs in triple-negative breast cancer cells. J Cell Biochem. 2016; 117(8):1913-1925. https://doi.org/10.1002/jcb.25490
  24. Sherr CJ, Bartek J. Cell cycle-targeted cancer therapies. Annu Rev Cancer Biol. 2017;1(1):41-57. https://doi.org/10.1146/annurev-cancerbio-040716-075628
  25. Gudas JM, Payton M, Thukral S, et al. Cyclin E2, a novel G(1) cyclin that binds Cdk2 and is aberrantly expressed in human cancers. Mol Cell Biol. 1999;19(1):612-622. https://doi.org/10.1128/MCB.19.1.612
  26. Bolognese F, Wasner M, Dohna CL, et al. The cyclin B2 promoter depends on NF-Y, a trimer whose CCAAT-binding activity is cell-cycle regulated. Oncogene. 1999;18(10):1845-1853. https://doi.org/10.1038/sj/onc/1202494
  27. Gong D, Ferrell JE. The roles of cyclin A2, B1, and B2 in early and late mitotic events. Mol Biol Cell. 2010;21(18):3149-3161. https://doi.org/10.1091/mbc.E10-05-0393