DOI QR코드

DOI QR Code

A New Report of Biscogniauxia petrensis Isolated from Mosquitoes in Korea

  • Das, Kallol (School of Applied Biosciences, Kyungpook National University) ;
  • Kim, Joung-Ho (School of Applied Biosciences, Kyungpook National University) ;
  • Choi, Kwang-Shik (School of Life Sciences, Kyungpook National University) ;
  • Lee, Seung-Yeol (School of Applied Biosciences, Kyungpook National University) ;
  • Jung, Hee-Young (School of Applied Biosciences, Kyungpook National University)
  • Received : 2020.04.13
  • Accepted : 2020.06.13
  • Published : 2020.06.30

Abstract

A fungal strain designated KNU-WDM2A2 was isolated from mosquitoes in Gimcheon, Korea. The pure culture was transferred to potato dextrose agar (PDA) and synthetic nutrient agar (SNA) media and attained a diameter of 90 mm after 10 days of incubation at 25℃. The colonies were whitish to light pink and cottony to wooly, with an abundant production of aerial mycelia. The strain produced hyaline to slightly yellowish conidiophores that were rough-walled and branched, with conidiogenous cells arising terminally or laterally. Conidia were unicellular, hyaline to light brown, smooth, and oval or ovoid to clavate, with a size of 4.1-6.9×2.5-3.3 ㎛ (n=65). A phylogenetic analysis was conducted using the internal transcribed spacer (ITS) regions and 28S rDNA of large subunit (LSU) sequences, to support the cultural and morphological characteristics. The KNU-WDM2A2 strain was identified here as Biscogniauxia petrensis, new to Korea.

Keywords

References

  1. Hyde KD, Jones EBG, Liu JK, Ariyawansa H, Boehm E, Boonmee S, Braun U, Chomnunti P, Crous PW, Dai DQ, et al. Families of Dothideomycetes. Fungal Divers 2013;63:1-313. https://doi.org/10.1007/s13225-013-0263-4
  2. Maharachchikumbura SSN, Hyde KD, Jones EBG, McKenzie EHC, Bhat JD, Dayarathne MC, Huang SK, Norphanphoun C, Senanayake IC, Perera RH, et al. Families of Sordariomycetes. Fungal Divers 2016;79:1-317. https://doi.org/10.1007/s13225-016-0369-6
  3. U’Ren JM, Miadlikowska J, Zimmerman NB, Lutzoni F, Stajich JE, Arnold AE. Contributions of North American endophytes to the phylogeny, ecology, and taxonomy of Xylariaceae (Sordariomycetes, Ascomycota). Mol Phylogenet Evol 2016;98:210-32. https://doi.org/10.1016/j.ympev.2016.02.010
  4. Fournier J, Lechat C, Courtecuisse R. The genus Biscogniauxia (Xylariaceae) in Guadeloupe and Martinique (French West Indies). Ascomyceteorg 2017;9:67-99.
  5. Hsieh HM, Ju YM, Rogers JD. Molecular phylogeny of Hypoxylon and closely related genera. Mycologia 2005;97:844-65. https://doi.org/10.1080/15572536.2006.11832776
  6. Daranagama DA, Camporesi E, Tian Q, Liu X, Chamyuang S, Stadler M, Hyde KD. Anthostomella is polyphyletic comprising several genera in Xylariaceae. Fungal Divers 2015;73:203-38. https://doi.org/10.1007/s13225-015-0329-6
  7. Senanayake IC, Maharachchikumbura SSN, Hyde KD, Bhat JD, Jones EBG, McKenzie EHC, Dai DQ, Daranagama DA, Dayarathne MC, Goonasekara ID, et al. Towards unraveling relationships in Xylariomycetidae (Sordariomycetes). Fungal Divers 2015;73:73-144. https://doi.org/10.1007/s13225-015-0340-y
  8. Wendt L, Sir EB, Kuhnert E, Heitkamper S, Lambert C, Hladki AI, Romero AI, Luangsaard JJ, Srikitikulchai P, Persoh D, et al. Resurrection and emendation of the Hypoxylaceae, recognised from a multigene genealogy of the Xylariales. Mycol Prog 2017;17:115-54.
  9. Nirenberg HI, Aoki T. Fusarium nisikadoi, a new species from Japan. Mycoscience 1997;38:329-33. https://doi.org/10.1007/BF02464091
  10. Zhang ZF, Liu F, Zhou X, Liu XZ, Liu SJ, Cai L. Culturable mycobiota from Karst caves in China, with descriptions of 20 new species. Persoonia 2017;39:1-31. https://doi.org/10.3767/persoonia.2017.39.01
  11. Gardes M, Bruns TD. ITS primers with enhanced specificity for basidiomycetes - application to the identification of mycorrhizae and rusts. Mol Ecol 1993;2:113-8. https://doi.org/10.1111/j.1365-294X.1993.tb00005.x
  12. White TJ, Bruns T, Lee S, Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, editors. PCR protocols: a guide to methods and applications. New York: Academic Press; 1990. p. 315-22.
  13. Vilgalys R, Hester M. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol 1990;172:4238-46. https://doi.org/10.1128/JB.172.8.4238-4246.1990
  14. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111-20. https://doi.org/10.1007/BF01731581
  15. Kumar S, Stecher G, Tamura K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870-4. https://doi.org/10.1093/molbev/msw054
  16. Pereira EDS, Sarquis MIDM, Ferreira-Keppler RL, Hamada N, Alencar YB. Filamentous fungi associated with mosquito larvae (Diptera: Culicidae) in Municipalities of the Brazilian Amazon. Neotrop Entomol 2009;38:352-9. https://doi.org/10.1590/S1519-566X2009000300009
  17. Da Costa GL, De Oliveira PC. Penicillium species in mosquitoes from two Brazilian regions. J Basic Microbiol 1998;38:343-7. https://doi.org/10.1002/(SICI)1521-4028(199811)38:5/6<343::AID-JOBM343>3.0.CO;2-Z
  18. Heo I, Hong K, Yang H, Lee HB, Choi YJ, Hong SB. Diversity of Aspergillus, Penicillium, and Talaromyces species isolated from freshwater environments in Korea. Mycobiology 2019;47:12-9. https://doi.org/10.1080/12298093.2019.1572262
  19. Nguyen TTT, Lee HB. Isolation and characterization of Blakeslea trispora isolated from gut of grasshopper and soldier fly larva in Korea. Kor J Mycol 2016;44:355-9. https://doi.org/10.4489/KJM.2016.44.4.355
  20. Nguyen TTT, Duong TT, Lee HB. Characterization of two new records of Mucoralean species isolated from gut of soldier fly larva in Korea. Mycobiology 2016;44:310-3. https://doi.org/10.5941/MYCO.2016.44.4.310
  21. Inacio ML, Henriques J, Guimaraes GL, Azinheira HG, Lima A, Sousa E. Platypus cylindrus Fab. (Coleoptera: Platypodidae) transports Biscogniauxia mediterranea, agent of cork oak charcoal canker. Bol San Veg Plagas 2011;37:181-6.
  22. Hyde KD, Norphanphoun C, Maharachchikumbura SSN, Bhat DJ, Jones EBG, Bundhun D, Chen YJ, Bao DF, Boonmee S, Calabon MS, et al. Refined families of Sordariomycetes. Mycosphere 2020;11:305-1059. https://doi.org/10.5943/mycosphere/11/1/7
  23. Raimondo ML, Lops F, Carlucci A. Charcoal canker of pear, plum, and quince trees caused by Biscogniauxia rosacearum sp. nov. in southern Italy. Plant Dis 2016;100:1813-22. https://doi.org/10.1094/PDIS-09-15-1037-RE
  24. Luchi1 N, Capretti P, Vettraino AM, Vannini A, Pinzani P, Pazzagli M. Early detection of Biscogniauxia nummularia in symptomless European beech (Fagus sylvatica L.) by TaqManTM quantitative real-time PCR. Lett Appl Microbiol 2006;43:33-8. https://doi.org/10.1111/j.1472-765X.2006.01920.x