DOI QR코드

DOI QR Code

The Effects of a Vasodilator on Transluminal Attenuation Gradient at Coronary Computed Tomography Angiography

  • Moon Sung Kim (Department of Radiology, College of Medicine, Dong-A University) ;
  • Eun-Ju Kang (Department of Radiology, College of Medicine, Dong-A University) ;
  • Hyun Jin Kim (Department of Radiology, College of Medicine, Dong-A University) ;
  • Moo Hyun Kim (Department of Cardiology, College of Medicine, Dong-A University) ;
  • Ki-Nam Lee (Department of Radiology, College of Medicine, Dong-A University)
  • Received : 2019.12.04
  • Accepted : 2020.04.22
  • Published : 2020.12.01

Abstract

Objective: To evaluate the effects of vasodilators on contrast enhancement and transluminal attenuation gradient (TAG) of coronary arteries at coronary computed tomography angiography (CCTA). Materials and Methods: We retrospectively reviewed CCTA scans of patients who underwent double-acquisition CCTA; CCTA without a vasodilator, and CCTA during a intravenous (IV) infusion of nitrate. Among them, we enrolled 19 patients who had no significant atherosclerotic lesions or coronary spasms. In the control group, 28 patients were enrolled who showed normal coronary arteries on CCTA, which was acquired by a conventional method (sublingual vasodilator). We measured the TAG and Hounsfield units for each of the three major epicardial coronary arteries (reported as 'ProxHU') and then compared the results between the nitrate administration methods (CT without vasodilator [CTpre], CT with IV vasodilator [CTiv], and CT with sublingual vasodilator [CTsub]). Results: The mean TAG showed a significant difference between the coronary arteries (right coronary artery [RCA] > left anterior descending artery [LAD] > left circumflex artery [LCX], p < 0.05), while there was no difference in ProxHU of each coronary artery in all three types of nitrate administration methods (p > 0.05). The TAG of CTpre group showed steeper slope than those of vasodilator groups (CTiv and CTsub) on LAD and LCX ([LAD: CTpre = -22.1 ± 6.66, CTiv = -16.76 ± 5.78, and CTsub = -16.47 ± 5.78, p = 0.005], [LCX: CTpre = -31.26 ± 17.43, CTiv = -23.74 ± 14.06, and CTsub = -20.94 ± 12.15, p = 0.051]), while that of RCA showed no significant differences (p = 0.600). When comparing proxHU, CTiv showed higher proxHU than that of CTpre or CTsub, especially on LCX (CTpre = 426.7 ± 68.3, CTiv = 467.9 ± 84.9, and CTsub = 404.9 ± 63.3, p = 0.013). ProxHU showed a negative correlation with TAG on all three of methods (r = -0.280, p < 0.001). Conclusion: TAG in CCTA was significantly affected by vasodilator administration. Both TAG and ProxHU of coronary arteries tend to increase with vasodilator administration on CCTA.

Keywords

Acknowledgement

I would like to offer my special thanks to the staff of Canon Medical Systems Korea for assistance with valuable comments about technology and also Vital Images Inc. for their supportive collaboration.

References

  1. Dharampal AS, Papadopoulou SL, Rossi A, Meijboom WB, Weustink A, Dijkshoorn M, et al. Diagnostic performance of computed tomography coronary angiography to detect and exclude left main and/or three-vessel coronary artery disease. Eur Radiol 2013;23:2934-2943 https://doi.org/10.1007/s00330-013-2935-6
  2. Maurer MH, Zimmermann E, Schlattmann P, Germershausen C, Hamm B, Dewey M. Indications, imaging technique, and reading of cardiac computed tomography: survey of clinical practice. Eur Radiol 2012;22:59-72 https://doi.org/10.1007/s00330-011-2239-7
  3. Wong DT, Ko BS, Cameron JD, Nerlekar N, Leung MC, Malaiapan Y, et al. Transluminal attenuation gradient in coronary computed tomography angiography is a novel noninvasive approach to the identification of functionally significant coronary artery stenosis: a comparison with fractional flow reserve. J Am Coll Cardiol 2013;61:1271-1279 https://doi.org/10.1016/j.jacc.2012.12.029
  4. Choi JH, Min JK, Labounty TM, Lin FY, Mendoza DD, Shin DH, et al. Intracoronary transluminal attenuation gradient in coronary CT angiography for determining coronary artery stenosis. JACC Cardiovasc Imaging 2011;4:1149-1157 https://doi.org/10.1016/j.jcmg.2011.09.006
  5. Ko BS, Wong DT, Norgaard BL, Leong DP, Cameron JD, Gaur S, et al. Diagnostic performance of transluminal attenuation gradient and noninvasive fractional flow reserve derived from 320-detector row CT angiography to diagnose hemodynamically significant coronary stenosis: an NXT substudy. Radiology 2016;279:75-83 https://doi.org/10.1148/radiol.2015150383
  6. Stuijfzand WJ, Danad I, Raijmakers PG, Marcu CB, Heymans MW, van Kuijk CC, et al. Additional value of transluminal attenuation gradient in CT angiography to predict hemodynamic significance of coronary artery stenosis. JACC Cardiovasc Imaging 2014;7:374-386 https://doi.org/10.1016/j.jcmg.2013.12.013
  7. Takx RA, Sucha D, Park J, Leiner T, Hoffmann U. Sublingual nitroglycerin administration in coronary computed tomography angiography: a systematic review. Eur Radiol 2015;25:3536-3542 https://doi.org/10.1007/s00330-015-3791-3
  8. Feldman RL, Pepine CJ, Curry RC Jr, Conti CR. Coronary arterial responses to graded doses of nitroglycerin. Am J Cardiol 1979;43:91-97 https://doi.org/10.1016/0002-9149(79)90050-X
  9. Scanlon PJ, Faxon DP, Audet AM, Carabello B, Dehmer GJ, Eagle KA, et al. ACC/AHA guidelines for coronary angiography. A report of the American College of Cardiology/American Heart Association Task Force on practice guidelines (Committee on Coronary Angiography). Developed in collaboration with the Society for Cardiac Angiography and Interventions. J Am Coll Cardiol 1999;33:1756-1824 https://doi.org/10.1016/S0735-1097(99)00126-6
  10. Johnson PT, Eng J, Pannu HK, Fishman EK. 64-MDCT angiography of the coronary arteries: nationwide survey of patient preparation practice. AJR Am J Roentgenol 2008;190:743-747 https://doi.org/10.2214/AJR.07.2620
  11. Park EA, Lee W, Park SJ, Kim YK, Hwang HY. Influence of coronary artery diameter on intracoronary transluminal attenuation gradient during CT angiography. JACC Cardiovasc Imaging 2016;9:1074-1083 https://doi.org/10.1016/j.jcmg.2015.10.028
  12. Kang EJ, Kim MH, De Jin C, Seo J, Kim DW, Yoon SK, et al. Noninvasive detection of coronary vasospastic angina using a double-acquisition coronary CT angiography protocol in the presence and absence of an intravenous nitrate: a pilot study. Eur Radiol 2017;27:1136-1147 https://doi.org/10.1007/s00330-016-4476-2
  13. Jin C, Kim MH, Kang EJ, Cho YR, Park TH, Lee KN, et al. Assessing vessel tone during coronary artery spasm by dual-acquisition multidetector computed tomography angiography. Cardiology 2018;139:25-32 https://doi.org/10.1159/000478926
  14. Fujimoto S, Giannopoulos AA, Kumamaru KK, Matsumori R, Tang A, Kato E, et al. The transluminal attenuation gradient in coronary CT angiography for the detection of hemodynamically significant disease: can all arteries be treated equally? Br J Radiol 2018;91:20180043
  15. Weustink AC, Meijboom WB, Mollet NR, Otsuka M, Pugliese F, van Mieghem C, et al. Reliable high-speed coronary computed tomography in symptomatic patients. J Am Coll Cardiol 2007;50:786-794 https://doi.org/10.1016/j.jacc.2007.04.068
  16. Vanhoenacker PK, Heijenbrok-Kal MH, Van Heste R, Decramer I, Van Hoe LR, Wijns W, et al. Diagnostic performance of multidetector CT angiography for assessment of coronary artery disease: meta-analysis. Radiology 2007;244:419-428 https://doi.org/10.1148/radiol.2442061218
  17. Cademartiri F, Seitun S, Clemente A, La Grutta L, Toia P, Runza G, et al. Myocardial blood flow quantification for evaluation of coronary artery disease by computed tomography. Cardiovasc Diagn Ther 2017;7:129-150 https://doi.org/10.21037/cdt.2017.03.22
  18. Kato E, Fujimoto S, Takamura K, Kawaguchi Y, Aoshima C, Hiki M, et al. Clinical significance of transluminal attenuation gradient in 320-row area detector coronary CT angiography. Heart Vessels 2018;33:462-469 https://doi.org/10.1007/s00380-017-1081-5
  19. Dodge JT Jr, Brown BG, Bolson EL, Dodge HT. Lumen diameter of normal human coronary arteries. Influence of age, sex, anatomic variation, and left ventricular hypertrophy or dilation. Circulation 1992;86:232-246 https://doi.org/10.1161/01.CIR.86.1.232
  20. Steigner ML, Mitsouras D, Whitmore AG, Otero HJ, Wang C, Buckley O, et al. Iodinated contrast opacification gradients in normal coronary arteries imaged with prospectively ECG-gated single heart beat 320-detector row computed tomography. Circ Cardiovasc Imaging 2010;3:179-186 https://doi.org/10.1161/CIRCIMAGING.109.854307
  21. Okada M, Nakashima Y, Nomura T, Miura T, Nao T, Yoshimura M, et al. Coronary vasodilation by the use of sublingual nitroglycerin using 64-slice dual-source coronary computed tomography angiography. J Cardiol 2015;65:230-236 https://doi.org/10.1016/j.jjcc.2014.05.012
  22. Harrison DG, Bates JN. The nitrovasodilators. New ideas about old drugs. Circulation 1993;87:1461-1467 https://doi.org/10.1161/01.CIR.87.5.1461
  23. Abrams J. Beneficial actions of nitrates in cardiovascular disease. Am J Cardiol 1996;77:31C-37C https://doi.org/10.1016/S0002-9149(96)00186-5
  24. Divakaran S, Loscalzo J. The role of nitroglycerin and other nitrogen oxides in cardiovascular therapeutics. J Am Coll Cardiol 2017;70:2393-2410 https://doi.org/10.1016/j.jacc.2017.09.1064
  25. Feldman RL, Marx JD, Pepine CJ, Conti CR. Analysis of coronary responses to various doses of intracoronary nitroglycerin. Circulation 1982;66:321-327 https://doi.org/10.1161/01.CIR.66.2.321
  26. Cohen MV, Kirk ES. Differential response of large and small coronary arteries to nitroglycerin and angiotensin. Autoregulation and tachyphylaxis. Circ Res 1973;33:445-453 https://doi.org/10.1161/01.RES.33.4.445