Acknowledgement
We acknowledge the provision of the rib fracture detection algorithm prototype by Aidoc Medical (Tel Aviv, Israel).
References
- Sirmali M, Turut H, Topcu S, Gulhan E, Yazici U, Kaya S, et al. A comprehensive analysis of traumatic rib fractures: morbidity, mortality and management. Eur J Cardiothorac Surg 2003;24:133-138 https://doi.org/10.1016/S1010-7940(03)00256-2
- Sokolovskaya E, Shinde T, Ruchman RB, Kwak AJ, Lu S, Shariff YK, et al. The effect of faster reporting speed for imaging studies on the number of misses and interpretation errors: a pilot study. J Am Coll Radiol 2015;12:683-688 https://doi.org/10.1016/j.jacr.2015.03.040
- Park SH, Song HH, Han JH, Park JM, Lee EJ, Park SM, et al. Effect of noise on the detection of rib fractures by residents. Invest Radiol 1994;29:54-58 https://doi.org/10.1097/00004424-199401000-00009
- Berbaum KS, Franken EA, Dorfman DD, Rooholamini SA, Coffman CE, Cornell SH, et al. Time course of satisfaction of search. Invest Radiol 1991;26:640-648 https://doi.org/10.1097/00004424-199107000-00003
- Banaste N, Caurier B, Bratan F, Bergerot JF, Thomson V, Millet I. Whole-body CT in patients with multiple traumas: factors leading to missed injury. Radiology 2018;289:374-383 https://doi.org/10.1148/radiol.2018180492
- Cho SH, Sung YM, Kim MS. Missed rib fractures on evaluation of initial chest CT for trauma patients: pattern analysis and diagnostic value of coronal multiplanar reconstruction images with multidetector row CT. Br J Radiol 2012;85:e845-e850 https://doi.org/10.1259/bjr/28575455
- Mayberry JC, Schipper PH. Traumatic rib fracture: conservative therapy or surgical fixation?. In: Ferguson M, ed. Difficult decisions in thoracic surgery. London: Springer, 2011:489-493
- Lu MS, Huang YK, Liu YH, Liu HP, Kao CL. Delayed pneumothorax complicating minor rib fracture after chest trauma. Am J Emerg Med 2008;26:551-554 https://doi.org/10.1016/j.ajem.2007.08.022
- Ho SW, Teng YH, Yang SF, Yeh HW, Wang YH, Chou MC, et al. Risk of pneumonia in patients with isolated minor rib fractures: a nationwide cohort study. BMJ Open 2017;7:e013029
- Tanaka H, Yukioka T, Yamaguti Y, Shimizu S, Goto H, Matsuda H, et al. Surgical stabilization of internal pneumatic stabilization? A prospective randomized study of management of severe flail chest patients. J Trauma 2002;52:727-732; discussion 732 https://doi.org/10.1097/00005373-200204000-00020
- Bemelman M, de Kruijf MW, van Baal M, Leenen L. Rib fractures: to fix or not to fix? An evidence-based algorithm. Korean J Thorac Cardiovasc Surg 2017;50:229-234 https://doi.org/10.5090/kjtcs.2017.50.4.229
- de Jong MB, Kokke MC, Hietbrink F, Leenen LPH. Surgical management of rib fractures: strategies and literature review. Scand J Surg 2014;103:120-125 https://doi.org/10.1177/1457496914531928
- Murphy CE , Raja AS, Baumann BM, Medak AJ, Langdorf MI, Nishijima DK, et al. Rib fracture diagnosis in the Panscan era. Ann Emerg Med 2017;70:904-909 https://doi.org/10.1016/j.annemergmed.2017.04.011
- Ringl H, Lazar M, Topker M, Woitek R, Prosch H, Asenbaum U, et al. The ribs unfolded-a CT visualization algorithm for fast detection of rib fractures: effect on sensitivity and specificity in trauma patients. Eur Radiol 2015;25:1865-1874 https://doi.org/10.1007/s00330-015-3598-2
- Lee JG, Jun S, Cho YW, Lee H, Kim GB, Seo JB, et al. Deep learning in medical imaging: general overview. Korean J Radiol 2017;18:570-584 https://doi.org/10.3348/kjr.2017.18.4.570
- Mannil M, von Spiczak J, Manka R, Alkadhi H. Texture analysis and machine learning for detecting myocardial infarction in noncontrast low-dose computed tomography: unveiling the invisible. Invest Radiol 2018;53:338-343 https://doi.org/10.1097/RLI.0000000000000448
- Prevedello LM, Erdal BS, Ryu JL, Little KJ, Demirer M, Qian S, et al. Automated critical test findings identification and online notification system using artificial intelligence in imaging. Radiology 2017;285:923-931 https://doi.org/10.1148/radiol.2017162664
- Winkel DJ, Heye T, Weikert TJ, Boll DT, Stieltjes B. Evaluation of an AI-based detection software for acute findings in abdominal computed tomography scans: toward an automated work list prioritization of routine CT examinations. Invest Radiol 2019;54:55-59 https://doi.org/10.1097/RLI.0000000000000509
- Alkadi R, Taher F, El-baz A, Werghi N. A deep learning-based approach for the detection and localization of prostate cancer in T2 magnetic resonance images. J Digital Imaging 2019;32:793-807 https://doi.org/10.1007/s10278-018-0160-1
- Kooi T, Litjens G, van Ginneken B, Gubern-Merida A, Sanchez CI, Mann R, et al. Large scale deep learning for computer aided detection of mammographic lesions. Med Image Anal 2017;35:303-312 https://doi.org/10.1016/j.media.2016.07.007
- Cicero M, Bilbily A, Colak E, Dowdell T, Gray B, Perampaladas K, et al. Training and validating a deep convolutional neural network for computer-aided detection and classification of abnormalities on frontal chest radiographs. Invest Radiol 2017;52:281-287 https://doi.org/10.1097/RLI.0000000000000341
- Yahalomi E, Chernofsky M, Werman M. Detection of distal radius fractures trained by a small set of X-ray images and faster R-CNN. In: Arai K, Bhatia R, Kapoor S, eds. Intelligent computing. Cham: Springer, 2019:971-981
- Thian YL, Li Y, Jagmohan P, Sia D, Chan VEY, Tan RT. Convolutional neural networks for automated fracture detection and localization on wrist radiographs. Radiol Artif Intell 2019;1:e180001
- Kim DH, MacKinnon T. Artificial intelligence in fracture detection: transfer learning from deep convolutional neural networks. Clin Radiol 2018;73:439-445 https://doi.org/10.1016/j.crad.2017.11.015
- Starosolski ZA, Kan H, Annapragada AV. CNN-based radiographic acute tibial fracture detection in the setting of open growth plates. bioRxiv, 2019. Available at: https://doi.org/10.1101/506154. Accessed August 25, 2019
- Kitamura G, Chung CY, Moore BE. Ankle fracture detection utilizing a convolutional neural network ensemble implemented with a small sample, de novo training, and multiview incorporation. J Digit Imaging 2019;32:672-677 https://doi.org/10.1007/s10278-018-0167-7
- Lindsey R, Daluiski A, Chopra S, Lachapelle A, Mozer M, Sicular S, et al. Deep neural network improves fracture detection by clinicians. Proc Natl Acad Sci U S A 2018;115:11591-11596 https://doi.org/10.1073/pnas.1806905115
- Burns JE, Yao J, Munoz H, Summers RM. Automated detection, localization, and classification of traumatic vertebral body fractures in the thoracic and lumbar spine at CT. Radiology 2016;278:64-73 https://doi.org/10.1148/radiol.2015142346
- Bar A, Wolf L, Amitai OB, Toledano E, Elnekave E. Compression fractures detection on CT. Medical Imaging 2017: Computer-Aided Diagnosis 2017;10134:1013440
- Chilamkurthy S, Ghosh R, Tanamala S, Biviji M, Campeau NG, Venugopal VK, et al. Development and validation of deep learning algorithms for detection of critical findings in head CT scans [updated April 2018]. Cornell University, 2018. Available at: https://arxiv.org/abs/1803.05854. Accessed August 25, 2019
- Yan L, Chuan X, Xia C, Wang S, Chen K. Deep learning for automatic detection of fractures on chest CT scans after blunt trauma (number: B-0566). ECR 2019 (European Congress of Radiology);2019 February 27-March 3;Vienna, Austria
- He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. Cornell University, 2015. Available at: https://arxiv.org/abs/1512.03385. Accessed August 25, 2019
- Sergeev A, Del Balso M. Horovod: fast and easy distributed deep learning in TensorFlow [updated February 2018]. Cornell University, 2018. Available at: https://arxiv.org/abs/1802.05799. Accessed August 25, 2019
- Talbot BS, Gange CP, Chaturvedi A, Klionsky N, Hobbs SK, Chaturvedi A. Traumatic rib injury: patterns, imaging pitfalls, complications, and treatment. Radiographics 2017;37:628-651 https://doi.org/10.1148/rg.2017160100
- Park HA. An introduction to logistic regression: from basic concepts to interpretation with particular attention to nursing domain. J Korean Acad Nurs 2013;43:154-164 https://doi.org/10.4040/jkan.2013.43.2.154
- Battle CE, Hutchings H, Evans PA. Risk factors that predict mortality in patients with blunt chest wall trauma: a systematic review and meta-analysis. Injury 2012;43:8-17 https://doi.org/10.1016/j.injury.2011.01.004