Acknowledgement
The authors would like to especially acknowledge Qian Gao, MS and Yucai Li, MS (Ocean International Center E, Chaoyang Rd Side Rd, ShiLiPu, Chaoyang Qu, Beijing Shi) for their support in training and testing the convolutional neural network model.
References
- Cho SH, Sung YM, Kim MS. Missed rib fractures on evaluation of initial chest CT for trauma patients: pattern analysis and diagnostic value of coronal multiplanar reconstruction images with multidetector row CT. Br J Radiol 2012;85:e845-e850 https://doi.org/10.1259/bjr/28575455
- Lin FC, Li RY, Tung YW, Jeng KC, Tsai SC. Morbidity, mortality, associated injuries, and management of traumatic rib fractures. J Chin Med Assoc 2016;79:329-334 https://doi.org/10.1016/j.jcma.2016.01.006
- Talbot BS, Gange CP Jr, Chaturvedi A, Klionsky N, Hobbs SK, Chaturvedi A. Traumatic rib injury: patterns, imaging pitfalls, complications, and treatment. Radiographics 2017;37:628-651 https://doi.org/10.1148/rg.2017160100
- Liman ST, Kuzucu A, Tastepe AI, Ulasan GN, Topcu S. Chest injury due to blunt trauma. Eur J Cardiothorac Surg 2003;23:374-378 https://doi.org/10.1016/s1010-7940(02)00813-8
- Murphy CE 4th, Raja AS, Baumann BM, Medak AJ, Langdorf MI, Nishijima DK, et al. Rib fracture diagnosis in the panscan era. Ann Emerg Med 2017;70:904-909 https://doi.org/10.1016/j.annemergmed.2017.04.011
- Langdorf MI, Medak AJ, Hendey GW, Nishijima DK, Mower WR, Raja AS, et al. Prevalence and clinical import of thoracic injury identified by chest computed tomography but not chest radiography in blunt trauma: multicenter prospective cohort study. Ann Emerg Med 2015;66:589-600 https://doi.org/10.1016/j.annemergmed.2015.06.003
- Kim J, Kim S, Kim YJ, Kim KG, Park J. Quantitative measurement method for possible rib fractures in chest radiographs. Healthc Inform Res 2013;19:196-204 https://doi.org/10.4258/hir.2013.19.3.196
- Kim EY, Yang HJ, Sung YM, Hwang KH, Kim JH, Kim HS. Sternal fracture in the emergency department: diagnostic value of multidetector CT with sagittal and coronal reconstruction images. Eur J Radiol 2012;81:e708-e711 https://doi.org/10.1016/j.ejrad.2011.05.029
- Sollmann N, Mei K, Hedderich DM, Maegerlein C, Kopp FK, Loffler MT, et al. Multi-detector CT imaging: impact of virtual tube current reduction and sparse sampling on detection of vertebral fractures. Eur Radiol 2019;29:3606-3616 https://doi.org/10.1007/s00330-019-06090-2
- van Laarhoven JJEM, Hietbrink F, Ferree S, Gunning AC, Houwert RM, Verleisdonk EMM, et al. Associated thoracic injury in patients with a clavicle fracture: a retrospective analysis of 1461 polytrauma patients. Eur J Trauma Emerg Surg 2019;45:59-63 https://doi.org/10.1007/s00068-016-0673-6
- Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 2016;316:2402-2410 https://doi.org/10.1001/jama.2016.17216
- He J, Baxter SL, Xu J, Xu J, Zhou X, Zhang K. The practical implementation of artificial intelligence technologies in medicine. Nat Med 2019;25:30-36 https://doi.org/10.1038/s41591-018-0307-0
- Choi JS, Han BK, Ko ES, Bae JM, Ko EY, Song SH, et al. Effect of a deep learning framework-based computer-aided diagnosis system on the diagnostic performance of radiologists in differentiating between malignant and benign masses on breast ultrasonography. Korean J Radiol 2019;20:749-758 https://doi.org/10.3348/kjr.2018.0530
- Wang H, Cui Z, Chen Y, Avidan M, Abdallah AB, Kronzer A. Predicting hospital readmission via cost-sensitive deep learning. IEEE/ACM Trans Comput Biol Bioinform 2018;15:1968-1978 https://doi.org/10.1109/TCBB.2018.2827029
- Onishi Y, Teramoto A, Tsujimoto M, Tsukamoto T, Saito K, Toyama H, et al. Automated pulmonary nodule classification in computed tomography images using a deep convolutional neural network tained by generative adversarial networks. Biomed Res Int 2019;2019:6051939
- Gao XW, Qian Y. Prediction of multidrug-resistant TB from CT pulmonary images based on deep learning techniques. Mol Pharm 2018;15:4326-4335
- Zura R, Xu ZJ, Della Rocca GJ, Mehta S, Steen RG. When is a fracture not "fresh"? Aligning reimbursement with patient outcome after treatment with low-intensity pulsed ultrasound. J Orthop Trauma 2017;31:248-251 https://doi.org/10.1097/BOT.0000000000000778
- Wu X, Jiang Y. [Old fracture]. Zhonghua Wai Ke Za Zhi 2015; 53:460-463
- Wootton-Gorges SL, Stein-Wexler R, Walton JW, Rosas AJ, Coulter KP, Rogers KK. Comparison of computed tomography and chest radiography in the detection of rib fractures in abused infants. Child Abuse Negl 2008;32:659-663 https://doi.org/10.1016/j.chiabu.2007.06.011
- Arredondo-Gomez E. [Treatment of traumatic clavicular pseudoarthrosis with the Hunec Colchero nail]. Acta Ortop Mex 2007;21:63-68
- Huang J, Rathod V, Sun C, Zhu M, Korattikara A, Fathi A, et al. Speed/accuracy trade-offs for modern convolutional object detectors [updated April 2017]. Available at: https://arxiv. org/abs/1611.10012. Accessed June 21, 2019
- Redmon J, Farhadi A. YOLOv3: an incremental improvement. Cornell University, 2018. Available at: https://arxiv.org/abs/1804.02767. Accessed June 22, 2019
- Setio AAA, Traverso A, de Bel T, Berens MSN, Bogaard CVD, Cerello P, et al. Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: the LUNA16 challenge. Med Image Anal 2017;42:1-13 https://doi.org/10.1016/j.media.2017.06.015
- Wang Y, Yan F, Lu X, Zheng G, Zhang X, Wang C, et al. IILS: intelligent imaging layout system for automatic imaging report standardization and intra-interdisciplinary clinical workflow optimization. EBioMedicine 2019;44:162-181 https://doi.org/10.1016/j.ebiom.2019.05.040
- Ren S, He K, Girshick R, Sun J. Faster R-CNN: towards realtime object detection with region proposal networks [updated January 2016]. Cornell University, 2015. Available at: https://arxiv.org/abs/1506.01497. Accessed June 22, 2019