DOI QR코드

DOI QR Code

Curing Behavior and Mechanical Properties of DGEBA/Phenol Novolac Hybrid Epoxy Resin according to Curing Accelerator Content

경화촉진제 함량에 따른 DGEBA/Phenol Novolac 혼성 에폭시 수지의 경화 거동과 역학적 성질 연구

  • Lee, Min Jun (Department of Advanced Organic Materials & Textile System Engineering, Chungnam National University) ;
  • Jeon, Min Hong (Department of Advanced Organic Materials & Textile System Engineering, Chungnam National University) ;
  • Jeong, Jin Wook (Department of Advanced Organic Materials & Textile System Engineering, Chungnam National University) ;
  • Lee, Yu Rim (Department of Advanced Organic Materials & Textile System Engineering, Chungnam National University) ;
  • Lee, Seung Goo (Department of Advanced Organic Materials & Textile System Engineering, Chungnam National University)
  • 이민준 (충남대학교 유기소재.섬유시스템공학과) ;
  • 전민홍 (충남대학교 유기소재.섬유시스템공학과) ;
  • 정진욱 (충남대학교 유기소재.섬유시스템공학과) ;
  • 이유림 (충남대학교 유기소재.섬유시스템공학과) ;
  • 이승구 (충남대학교 유기소재.섬유시스템공학과)
  • Received : 2020.04.26
  • Accepted : 2020.06.22
  • Published : 2020.06.30

Abstract

In this study, the curing behaviors and mechanical properties of DGEBA/Phenol novolac hybrid epoxy resin were investigated with respect to the curing accelerator content. The addition of a curing accelerator promotes the reaction between the epoxy resin and curing agent, and accordingly, differences occur in the curing behaviors and mechanical properties of the epoxy resin. The curing behavior of the epoxy resin was analyzed using DSC, and the thermal decomposition properties were confirmed through TGA. The tanδ, flexural, and impact properties were measured and analyzed via morphological observations. Consequently, it was determined that the curing accelerator content has a great influence on the curing behavior of the epoxy resin, such as the cure rate and activation energy, and also affects the mechanical properties of the resin.

Keywords

Acknowledgement

본 연구는 충남대학교 학술연구지원사업(과제번호: 2018-1059-01)의 지원 및 관리로 수행되었으며, 이에 감사드립니다.

References

  1. K. S. Kim, K. M. Bae, S. Y. Oh, M. K. Seo, C. G. Kang, and S. J. Park, “Trend of Carbon Fiber-reinforced Composites for Lightweight Vehicles”, Elastomers and Composites, 2012, 47, 67-75.
  2. G. Carra and Carvelli, "Ageing of Pultruded Glass Fibre Reinforced Polymer Composites Exposed to Combined Environmental Agents", Compos. Struct., 2014, 108, 1019-1026. https://doi.org/10.1016/j.compstruct.2013.10.042
  3. J. F. Timmeman, B. S. Hayes, and J. C. Seferis, "Nanoclay Reinforcement Effects on the Cryogenic Microcracking of Carbon Fiber/epoxy Composites", Compos. Sci. Technol., 2002, 62, 1249-1258. https://doi.org/10.1016/S0266-3538(02)00063-5
  4. F. Lionetto, A. Moscatello, and A. Maffezzoli, "Effect of Binder Powders Added to Carbon Fiber Reinforcements on the Chemoreology of an Epoxy Resin for Composites", Compos. Part B-Eng., 2017, 112, 243-250. https://doi.org/10.1016/j.compositesb.2016.12.031
  5. Y. A. Kim, "Carbon Composite Material", Phys. High Technol., 2003, 12, 31-35.
  6. P. Wright, X. Fu, and I. Sinclair, "Ultra High Resolution Computed Tomography of Damage in Notched Carbon Fiber-Epoxy Composites", J. Compos. Mater., 2008, 42, 1993-1994. https://doi.org/10.1177/0021998308092211
  7. R. Liu and X. Wang, "Synthesis, Characterization, Thermal Properties and Flame Retardancy of a Novel Nonflammable Phosphazene-based Epoxy Resin", Polym. Degrad. Stabil., 2009, 94, 617-624. https://doi.org/10.1016/j.polymdegradstab.2009.01.008
  8. D. Gay and S. V. Hoa, Eds., "Composite Materials : Design and Applications", 2nd Ed., CRC Press, NY, 2007, pp.132-137.
  9. J. M. Choi, T. J. Kim, and M. S. Hyun, "Preparation of Bipolar Plate for Fuel Cell Using CNT/Graphite Nano-Composite", Carbon Lett., 2005, 6, 181-187.
  10. M. F. Grenier-Liustalot, M. P. Bente, and P. Grenier, "Reactivite du Dicyandiamide vis a vis des Groupements O et N-epoxyde-1. Mecanisme Reactionnel", Eur. Polym. J., 1991, 27, 1201-1216. https://doi.org/10.1016/0014-3057(91)90057-U
  11. D. Gilbert and S. Schneider, “Mechanism of the Dicyandiamide/Epoxide Reaction”, Macromolecules, 1991, 24, 360-369. https://doi.org/10.1021/ma00002a004
  12. W. K. Goertzen and M. R. Kessler, “Creep Behavior of Carbon Fiber/epoxy Matrix Composites”, Mater. Sci. Eng.: A, 2006, 421, 217-225. https://doi.org/10.1016/j.msea.2006.01.063
  13. M. Ogata, N. Kinjo, and S. Eguchi, "Effects of Curing Accelerators on Physical Properties of Epoxy Molding Compound (EMC)", J. Appl. Polym., 1992, 44, 1795-1805. https://doi.org/10.1002/app.1992.070441012
  14. P. Rosso, L. Ye, and K. Friedrich, "A Toughened Epoxy Resin by Silica Nanoparticle Reinforcement", J. Appl. Polym., 2006, 100, 1849-1855. https://doi.org/10.1002/app.22805
  15. R. K. Prusty, D. K. Rathore, and M. J. Shukla, "Flexural Behaviour of CNT-filled Glass/epoxy Composites in an In-situ Environment Emphasizing Temperature Variation", Compos. Part B-Eng., 2015, 83, 166-174. https://doi.org/10.1016/j.compositesb.2015.08.035
  16. K. Wang, P. Ogier, and C. W. Tjiu, "Morphology and Mechanical Properties of Epoxy/alumina Nanocomposites", Key Eng. Mater., 2006, 312, 233-236. https://doi.org/10.4028/www.scientific.net/KEM.312.233