Acknowledgement
This research was funded by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-2019R1A2C2084041).
References
- X. Ren, R. Das, P. Tran, T. C. Ngo, and Y. M. Xie, "Auxetic Metamaterials and Structures: A Review", Smart. Mater. Struct., 2018, 27, 1-38.
- K. K. Saxena, R. Das, and E. P. Calius, "Three Decades of Auxetics Research - Materials with Negative Poisson's Ratio: A Review", Adv. Eng. Mater., 2016, 18, 1847-1870. https://doi.org/10.1002/adem.201600053
- H. M. A. Kolken and A A. Zadpoor, "Auxetic Mechanical Metamaterials", RSC Adv., 2017, 7, 5111-5129. https://doi.org/10.1039/C6RA27333E
- Y. Liu and H. Hu, "A Review on Auxetic Structures and Polymeric Materials", Sci. Res. Essays., 2010, 5, 1052-1063.
- Z. Wang and H. Hu, "Auxetic Materials and Their Potential Applications in Textiles", Text. Res. J., 2014, 84, 1600-1611. https://doi.org/10.1177/0040517512449051
- J. S. Kim, D. J. Lee, I. J. Kim, and J. W. Go, "The Latest Trends in Shoe Manufacturing Systems", Fiber Technol. Ind., 2019, 23, 255-264.
- S. Lee, "A Study on the Internal Support Structure for Insole of Small Scale Production Type Lead Using TPU Material", J. Integr. Des. Res., 2018, 17, 31-42. https://doi.org/10.21195/jidr.2018.17.2.003
- O. Duncan, T. Shepherd, C. Moroney, L. Foster, P. D. Venkatraman, K. Winwood, T. Allen, and A. Alderson, "Review of Auxetic Materials for Sports Applications: Expanding Options in Comfort and Protection", Appl. Sci., 2018, 8, 1-33. https://doi.org/10.3390/app8010001
- T. Li, Y. Chen, X. Hu, Y. Li, and L. Wang, "Exploiting Negative Poisson's Ratio to Design 3D-printed Composites with Enhanced Mechanical Properties", Mater. Des., 2018, 142, 247-258. https://doi.org/10.1016/j.matdes.2018.01.034
- C. Yang, H. D. Vora, and Y. Chang, "Behavior of Auxetic Structures under Compression and Impact Forces", Smart. Mater. Struct., 2018, 27, 1-12.
- Y. Han, and W. Lu, "Evolutionary Design of Nonuniform Cellular Structures with Optimized Poisson's Ratio Distribution", Mater. Des., 2018, 141, 384-394. https://doi.org/10.1016/j.matdes.2017.12.047
- H. Kim and S. Lee, "Characterization of Electrical Heating of Graphene/PLA Honeycomb Structure Composite Manufactured by CFDM 3D Printer", Fash. Text., 2020, 7, 1-18. https://doi.org/10.1186/s40691-019-0195-z
- P. Kasprzyk and J. Datta, "Novel Bio-based Thermoplastic Poly(ether-urethane)s. Correlations between the Structure, Processing and Properties", Polymer, 2019, 160, 1-10. https://doi.org/10.1016/j.polymer.2018.11.032
-
Q. Tang and K. Gao, "Structure Analysis of Polyether-based Thermoplastic Polyurethane Elastomers by FTIR,
$^1H$ NMR and$^{13}C$ NMR", Int. J. Polym. Anal. Ch., 2017, 22, 569-574. https://doi.org/10.1080/1023666X.2017.1312754 - R. M. Dorrepaal, B. M. Lawless, H. E. Burton, D. M. Espino, D. E. T. Shepherd, and A. A. Gowen, "Hyperspectral Chemical Imaging Reveals Spatially Varied Degradation of Polycarbonate Urethane (PCU) Biomaterials", Acta. Biomater., 2018, 83, 81-89.
- W. Lei, C. Fang, X. Zhou, Y. Cheng, R. Yang, and D. Liiu, “Morphology and Thermal Properties of Polyurethane Elastomer Based on Representative Structural Chain Extenders”, Thermochim. Acta, 2017, 653, 116-125. https://doi.org/10.1016/j.tca.2017.04.008
- Y.-M. Ha, Y.-O. Kim, S. Ahn, S.-K. Lee, J.-S. Lee, M. Park, J. W. Chung, and Y. C. Jung, "Robust and Stretchable Self-healing Polyurethane Based on Polycarbonate Diol with Different Soft-segment Molecular Weight for Flexible Devices", Eur. Polym. J., 2019, 118, 36-44. https://doi.org/10.1016/j.eurpolymj.2019.05.031
- P. Kasprzyk, E. Sadowska, and J. Datta, "Investigation of Thermoplastic Polyurethanes Synthesized via Two Different Prepolymers", J. Polym. Environ., 2019, 27, 2588-2599. https://doi.org/10.1007/s10924-019-01543-7
- Y. Wang, J. Yi, X. Peng, X. Ma, and S. Peng, "Structure-property Relationships of Novel Fluorinated Polycarbonate Polyurethane Films with High Transparency and Thermal Stability", Res. Chem. Intermediat., 2019, 45, 845-862. https://doi.org/10.1007/s11164-018-3647-y
- M. Spirkova, J. Pavlicevic, A. Strachota, R. Poreba, O. Bera, L. Kapralkova, J. Baldrian, M. Slouf, and N. Lazic, "Novel Polycarbonate-based Polyurethane Elastomers: Compositionproperty Relationship", Eur. Polym. J., 2011, 47, 959-972. https://doi.org/10.1016/j.eurpolymj.2011.01.001
- A. T. Miller, D. L. Safranski, K. E. Smith, D. G. Sycks, R. E. Guldberg, and K. Gall, “Fatigue of Injection Molded and 3D Printed Polycarbonate Urethane in Solution”, Polymer, 2017, 108, 121-134. https://doi.org/10.1016/j.polymer.2016.11.055
- S. H. Lee, "Morphology and Properties of Textiles Manufactured by Three-dimensional Printing Based on Fused Deposition Modeling", Text. Sci. Eng., 2015, 52, 272-279. https://doi.org/10.12772/TSE.2015.52.272
- S. Lee, "Evaluation of Mechanical Properties and Washability of 3D Printed Lace/voil Composite Fabrics Manufactured by FDM 3D Printing Technology", Fashion Text. Res. J., 2018, 20, 353-359. https://doi.org/10.5805/SFTI.2018.20.3.353
- S. Lee, "Tensile Properties and Stiffnesses of 3D-printed lace/voile Composite Fabrics Manufactured by Various Roller Processes", Text. Sci. Eng., 2019, 56, 8-14. https://doi.org/10.12772/tse.2019.56.008
- S. Kabir, H. Kim, and S. Lee, "Characterization of 3D Printed Auxetic Sinusoidal Patterns/nylon Composite Fabrics", Fiber. Polym., 2020, 21, 1372-1381. https://doi.org/10.1007/s12221-020-9507-6
- S. Kabir, H. Kim, and S. Lee, "Physical Property of 3D-printed Sinusoidal Pattern Using Shape Memory TPU Filament", Text. Res. J., 2020, 90. https://doi.org/10.1177/0040517520919750
- J. Zhang, G. Lu, D. Ruan, and Z. Wang, "Tensile Behavior of an Auxetic Structure: Analytical Modeling and Finite Element Analysis", Int. J. Mech. Sci., 2018, 136, 143-154. https://doi.org/10.1016/j.ijmecsci.2017.12.029
- J. Zhang, Z. Lu, D. Ruan, A. Alomarah, and Y. Durandet, "Large Deformation of an Auxetic Structure in Tension: Experiments and Finite Element Analysis", Compos. Struct., 2018, 184, 92-101. https://doi.org/10.1016/j.compstruct.2017.09.076