참고문헌
- Min, Y., Choi, H., " Introduction to Deep Learning and hot issues", Korea Information Processing Society Review, vol. 22, pp.7-21, 2015.
- Lee, S., Jeong, J., "2020 AI Top 7 Trends"- Beyond Perception, ETRI Insight, Insight Report 2019-57
- Lee, Y., Lee,Y., "Implementation of Moving Object Recognition based on Deep Learning", J. of the Semiconductor &Display Technology, Vol.17, No.1, pp.67-70, 2009.
- Lee, Y., Kim, Y., "Comparison of CNN and YOLO for Object Detection", J. of the Semiconductor & Display Technology Vol.19, No.1, pp.85-92, 2020.
- Kim, J., Cho, W., Na, M., Chun, M., "Development of Automatic Classification System of Vegetables by Image Processing and Deep Learning", J. of the Korean Data Analysis Society VOL.21 NO.1, pp. 63-73, 2019. https://doi.org/10.37727/jkdas.2019.21.1.63
- Kim, M., Shin, S., Suh, Y., "Application of Deep Learning Algorithm for Detecting Construction Workers Wearing Safety Helmet Using Computer Vision", J. of the Korean Society of Safety Vol. 34, No. 6, pp. 29-37, 2019. https://doi.org/10.14346/JKOSOS.2019.34.6.29
- Kim, D., "A Study on Target Detection and Tracking via Drones Using Deep Learning and Computer Vision", The Graduate School of Korea Aerospace University 2020
- Yi, H., Bui, K., Seon, C., "A Deep Learning LSTM Framework for Urban Traffic Flow and Fine Dust Prediction", J. of KIISE, Vol.47, No.3, pp. 292-297, 2020. https://doi.org/10.5626/jok.2020.47.3.292
- Chu,Y., Choi, Y., "A Deep Learning based IOT Device Recognition System", J. of the Semiconductor & Display Technology, Vol.18, No.2, pp.1-5, 2019.
- Yun, H., Park, K., Kim, D., "A Study on the Improvement of Intaglio Characters Recognition of Rubber Tires", J. of the Korea Convergence Society, Vol.9, No.10 pp. 7-12, 2018. https://doi.org/10.15207/JKCS.2018.9.10.007
- Baek, S., Kim, K., Jang, J., "Implementation of Car tire information recognition system using laser range sensor", J. of Korean Institute of Communications and Information Science, Vol.2016, No.1, pp. 123-124 2016.
- Lee, T., Cha, J., Ryu, B., Kim. J., "Deep Learning based Test Detection in P & ID Images", J. of Mechanical Science and Technology, Vol.2019,No.5, pp. 114-115, 2019
- K. Team, "Keras: the Python deep learning API", Keras.io, 2020. [Online]. Available: https://keras.io/.
- "TensorFlow", TensorFlow, 2020. [Online]. Available: https://www.tensorflow.org/ [Accessed: 05- Jun- 2020]
- H. Partnership, "OpenCV", Opencv.org, 2020. [Online]. Available: https://opencv.org/.
- Ji, S., Baek, U., Shin, M., Char, B., Moon, H., Kim, M., "Design of Web Application Traffic Classification Model Based on Convolution Neural Network", J. of Korean Institute of Communications and Information Science, Vol.44, No.06, pp. 1113-1120 2019. https://doi.org/10.7840/kics.2019.44.6.1113
- Ahn, H., Lee, Y., "A Research of CNN-based Object Detection for Multiple Object Tracking in Image", J. of the Semiconductor & Display Technology, Vol.18, No.3, pp.110-114, 2019.
- N. Ketkar, Deep Learning with Python. [Place of publication not identified]: Apress, 2017.
- Lim, H., Kim, J., Kwon, D., Han, Y., "Comparison Analysis of TensorFlow's Optimizer Based on MNIST's CNN Model", Journal of Advanced Technology Research, vol. 2, no. 1, pp. 6-14, 2020. .
- Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R., "Dropout: a simple way to prevent neural networks from overfitting.", J. of Machine Learning Research, Vol.15, No.1, pp.1929-1958, 2014.