DOI QR코드

DOI QR Code

산소발생용 Cobalt-phosphate (Co-pi) 촉매를 이용한 Gallium Nitride (GaN) 광전극의 광전기화학적 특성

Photoelectrochemical Properties of Gallium Nitride (GaN) Photoelectrode Using Cobalt-phosphate (Co-pi) as Oxygen Evolution Catalyst

  • 성채원 (전남대학교 화학공학부) ;
  • 배효정 (전남대학교 광전자융합기술연구소) ;
  • ;
  • 하준석 (전남대학교 화학공학부)
  • Seong, Chaewon (Department of Advanced Chemicals & Engineering, Chonnam National University) ;
  • Bae, Hyojung (Optoelectronics Convergence Research Center, Chonnam National University) ;
  • Burungale, Vishal Vilas (Department of Advanced Chemicals & Engineering, Chonnam National University) ;
  • Ha, Jun-Seok (Department of Advanced Chemicals & Engineering, Chonnam National University)
  • 투고 : 2020.06.12
  • 심사 : 2020.06.26
  • 발행 : 2020.06.30

초록

광전기화학적 물분해에서 광전극으로 이용되는 GaN은 전해질에 대해 높은 안정성을 가지고 있으며 물의 산화 환원준위를 포함하고 있어 외부전압 없이 물분해가 가능하다. 그러나 GaN 광전극의 경우, 재료 자체의 효율이 낮아 상용화하기에는 부족한 실정이다. 본 연구에서는 광효율을 향상시키기 위해 Cobalt phosphate(Co-pi) 촉매를 광전기증착(Photoelectro-deposition)방법을 통하여 GaN 광전극에 도입하였다. Co-pi 촉매 증착 후 SEM, EDS, XPS분석을 진행하여 Co-pi의 증착 여부 및 증착 정도를 확인하고, Potentiostat를 이용해 PEC 특성을 분석하였다. SEM 이미지를 통해 Co-pi가 GaN 표면 위에 20~25 nm 사이즈의 클러스터 형태로 고르게 증착되어 있는 것을 확인하였다. EDS 및 XPS 분석을 통해 GaN 표면의 입자가 Co-pi임을 확인하였다. 이 후 측정된 PEC 특성에서 Co-pi를 증착 시킨 후 0.5 mA/㎠에서 0.75 mA/㎠로 향상된 광전류밀도 값을 얻을 수 있었다. 향상된 원인을 밝히기 위하여, 임피던스 및 Mott-Schottky 측정을 진행하였고, 측정 결과, 50.35 Ω에서 34.16 Ω으로 감소한 분극저항(Rp)과 증가된 donor 농도(ND) 값을 확인하였다. 물분해 전 후, 표면 성분을 분석한 결과 물분해 후에도 Co-pi가 남아있음으로써 Co-pi 촉매가 안정적이라는 것을 확인하였다. 이를 통해, Co-pi가 GaN의 효율 향상을 위한 촉매로서 효과가 있음을 확인하였고, 다른 광전극에 촉매로써 적용시켰을 경우, PEC 시스템의 효율을 향상시킬 수 있을 것으로 판단된다.

In the photoelectrochemical (PEC) water splitting, GaN is one of the most promising photoanode materials due to high stability in electrolytes and adjustable energy band position. However, the application of GaN is limited because of low efficiency. To improve solar to hydrogen conversion efficiency, we introduce a Cobalt Phosphate (Co-pi) catalyst by photo-electrodeposition. The Co-pi deposition GaN were characterized by SEM, EDS, and XPS, respectively, which illustrated that Co-pi was successfully decorated on the surface of GaN. PEC measurement showed that photocurrent density of GaN was 0.5 mA/㎠ and that of Co-pi deposited GaN was 0.75 mA/㎠. Impedance and Mott-Schottky measurements were performed, and as a result of the measurement, polarization resistance (Rp) and increased donor concentration (ND) values decreased from 50.35 Ω to 34.16 Ω were confirmed. As a result of analyzing the surface components before and after the water decomposition, it was confirmed that the Co-pi catalyst is stable because Co-pi remains even after the water decomposition. Through this, it was confirmed that Co-pi is effective as a catalyst for improving GaN efficiency, and when applied as a catalyst to other photoelectrodes, it is considered that the efficiency of the PEC system can be improved.

키워드

참고문헌

  1. S. J. Davis, K. Caldeira, and H. D. Matthews, "Future $CO_2$ emissions and climate change from existing energy infrastructure", Science, 329(5997), 1330 (2010). https://doi.org/10.1126/science.1188566
  2. L. P. Rosa and S. K. Ribeiro, "The present, past, and future contributions to global warming of $CO_2$ emissions from fuels", Climatic Change, 48(2-3), 289 (2001). https://doi.org/10.1023/A:1010720931557
  3. S. Singh, S. Jain, P. S. Venkateswaran, A. K. Tiwaria, M. R. Nouni, J. K. Pandey, and S. Goel, "Hydrogen: A sustainable fuel for future of the transport sector", Renewable and Sustainable Energy Reviews, 51, 623 (2015). https://doi.org/10.1016/j.rser.2015.06.040
  4. N. Z. Muradov and T. N. Veziroglu, "Green" path from fossilbased to hydrogen economy: an overview of carbon-neutral technologies", International Journal of Hydrogen Energy, 33(23), 6804 (2008). https://doi.org/10.1016/j.ijhydene.2008.08.054
  5. O. S. Joo, "Hydrogen Production Technology", Korean Chem. Eng. Res., 49, 688 (2011). https://doi.org/10.9713/kcer.2011.49.6.688
  6. K. Fujii, T. Karasawa, and K. Ohkawa, "Hydrogen gas generation by splitting aqueous water using n-type GaN photoelectrode with anodic oxidation", Japanese Journal of Applied Physics, 44(4L), L543 (2005). https://doi.org/10.1143/JJAP.44.L543
  7. S. Y. Liu, J. K. Sheu J. C. Ye, S. J. Tu, C. K. Hsu, M. L. Lee, C. H. Kuo, and W. C Lai, "Characterization of n-GaN with naturally textured surface for photoelectrochemical hydrogen generation", Journal of The Electrochemical Society, 157(12), H1106 (2010). https://doi.org/10.1149/1.3499327
  8. I. Waki, D. Cohen, R. Lal, U. Mishra, S. P. DenBaars, and S. Nakamura, "Direct water photoelectrolysis with patterned n-GaN", Applied Physics Letters, 91(9), 093519 (2007). https://doi.org/10.1063/1.2769393
  9. K. Fujii, T. Ito, M. Ono, Y. Iwaki, T. Yao, and K. Ohkawa, "Investigation of surface morphology of n-type GaN after photoelectrochemical reaction in various solutions for $H_2$ gas generation", Physica Status Solidi C, 4(7), 2650 (2007). https://doi.org/10.1002/pssc.200674917
  10. H. Bae, S. W. Bang, J. W. Ju, and J. S. Ha, "Dependence of Doping on Indium Content in InGaN/GaN Multiple Quantum Wells for Effective Water Splitting", J. Microelectron. Packag. Soc., 25(3), 1 (2018). https://doi.org/10.6117/KMEPS.2018.25.3.001
  11. D. H. Tu, H. C. Wang, P. S. Wang, W. C. Cheng, K. H. Chen, C. I. Wu, S. Chattopadhyay and L. C. Chen, "Improved corrosion resistance of GaN electrodes in NaCl electrolyte for photoelectrochemical hydrogen generation", International journal of hydrogen energy, 38(34), 14433 (2013). https://doi.org/10.1016/j.ijhydene.2013.08.095
  12. I. M. Huygens, A. Theuwis, W. P. Gomes, and K. Strubbe, "Photoelectrochemical reactions at the n-GaN electrode in 1 M $H_2SO_4$ and in acidic solutions containing Cl- ions", Physical Chemistry Chemical Physics, 4(11), 2301 (2002). https://doi.org/10.1039/b110839p
  13. K. Koike, A. Nakamura, M. Sugiyama, Y. Nakano, and K. Fujii, "Surface Stability of n-type GaN Depending on Carrier Concentration and Electrolytes under photoelectrochemical reactions", Phys. Status Solidi C, 11, 821 (2014). https://doi.org/10.1002/pssc.201300466
  14. I. M. Huygens, K. Strubbe, and W. P. Gomes, "Electrochemistry and Photoetching of n-GaN", Journal of the Electrochemical Society, 147(5), 1797 (2000). https://doi.org/10.1149/1.1393436
  15. J. Yang, D. Wang, H. Han, and C. Li, "Roles of cocatalysts in photocatalysis and photoelectrocatalysis", Accounts of chemical research, 46(8), 1900 (2013). https://doi.org/10.1021/ar300227e
  16. Y. Gorlin, and T. F. Jaramillo, "A bifunctional nonprecious metal catalyst for oxygen reduction and water oxidation", Journal of the American Chemical Society, 132(39), 13612 (2010). https://doi.org/10.1021/ja104587v
  17. R. Abe, "Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation", Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 11(4), 179 (2010). https://doi.org/10.1016/j.jphotochemrev.2011.02.003
  18. K. L. Pickrahn, S. W. Park, Y. Gorlin, H. B. R. Lee, T. F. Jaramillo, and S. F. Bent, "Active MnOx electrocatalysts prepared by atomic layer deposition for oxygen evolution and oxygen reduction reactions", Advanced Energy Materials, 2(10), 1269 (2012). https://doi.org/10.1002/aenm.201200230
  19. M. M. Najafpour, T. Ehrenberg, M. Wiechen, and P. Kurz, "Calcium manganese (III) oxides ($CaMn_2O_4?x\;H_2$O) as biomimetic oxygen-evolving catalysts", Angewandte Chemie International Edition, 49(12), 2233 (2010). https://doi.org/10.1002/anie.200906745
  20. H. S. Kim, H. J Bae, S. J Kang, and J. S. Ha "$MnO_2$ co-catalyst effect on Photoelectrochemical Properties of GaN Photoelectrode", J. Microelectron. Packag. Soc., 23(4), 113 (2016). https://doi.org/10.6117/kmeps.2016.23.4.113
  21. Y. Surendranath, M. Dinca, and D. G. Nocera, "Electrolytedependent electrosynthesis and activity of cobalt-based water oxidation catalysts", Journal of the American Chemical Society, 131(7), 2615 (2009). https://doi.org/10.1021/ja807769r
  22. M. W. Kanan, Y. Surendranath, D. G. Nocera, "Cobalt-phosphate oxygen-evolving compound", Chemical Society Reviews, 38(1), 109 (2009). https://doi.org/10.1039/B802885K
  23. V. R. Choudhary, S. D. Sansare, and A. S. Mamman, "Lowtemperature selective oxidation of methane to carbon monoxide and hydrogen over cobalt-MgO catalysts", Applied Catalysis A: General, 90(1), L1 (1992). https://doi.org/10.1016/0926-860X(92)80242-5
  24. M. W. Kanan and D. G. Nocera, "In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and $Co^{2+}$", Science, 321(5892), 1072 (2008). https://doi.org/10.1126/science.1162018
  25. E. M. Steinmiller and K. S. Choi, "Photochemical deposition of cobalt-based oxygen evolving catalyst on a semiconductor photoanode for solar oxygen production", Proc. National Academy of Sciences, 106(49), 20633 (2009). https://doi.org/10.1073/pnas.0910203106
  26. A. G. Tamirat, W. N. Su, A. A. Dubale, H. M. Chen, and B. J. Hwang, "Photoelectrochemical water splitting at low applied potential using a NiOOH coated codoped (Sn, Zr) ${\alpha}-Fe_2O_3$ photoanode", Journal of Materials Chemistry A, 3(11), 5949 (2015). https://doi.org/10.1039/C4TA06915C
  27. H. Kim, H. Bae, S. W. Bang, S. Kim, S. H. Lee, S. W. Ryu, and J. S. Ha, "Enhanced photoelectrochemical stability of GaN photoelectrodes by $Al_2O_3$ surface passivation layer", Optics express, 27(4), A206 (2019). https://doi.org/10.1364/oe.27.00a206