DOI QR코드

DOI QR Code

Mechanical Modeling of Rollable OLED Display Apparatus Considering Spring Component

  • Ma, Boo Soo (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Jo, Woosung (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Kim, Wansun (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Kim, Taek-Soo (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST))
  • 투고 : 2020.06.01
  • 심사 : 2020.06.28
  • 발행 : 2020.06.30

초록

Flexible displays have been evolved into curved, foldable, and rollable as the degree of bending increases. Due to the presence of brittle electrodes (e.g. indium-tin oxide (ITO)) that easily cracked and delaminated under severe bending deformation, lowering mechanical stress of the electrodes has been critical issue. Because of this, mechanical stress of brittle electrode in flexible displays has been analyzed mostly in terms of bending radius. On the other hand, in order to make rollable display, various mechanical components such as roller and spring are needed to roll-up or extend the screen for the rollable display apparatus. By these mechanical components, brittle electrode in the rollable display is subjected to the excessive tensile stress due to the retracting force as well as the bending stress by the roller. In this study, mechanical deformation of rollable OLED display was modeled considering boundary conditions of the apparatus. An analytical modeling based on the classical beam theory was introduced in order to investigate the mechanical behavior of the rollable display. In addition, finite element analysis (FEA) was used to analyze the effect of mechanical components in the apparatus on the brittle electrode. Furthermore, a strategy for improving the mechanical reliability of the rollable display was suggested through controlling the stiffness of adhesives in the display panel.

키워드

참고문헌

  1. P. C. P. Bouten, P. J. Slikkerveer, and Y. Leterrier, "Mechanics of ITO on Plastic Substrates for Flexible Displays", Flexible flat panel displays, 20(1), 99 (2005).
  2. J. Lewis, "Material challenge for flexible organic devices", Mater. Today, 9(4), 38 (2006). https://doi.org/10.1016/S1369-7021(06)71446-8
  3. Y. Leterrier, L. Medico, F. Demarco, J.-A.E. Manson, U. Betz, F. M Escola, M. Kharrazi Olsson, and F. Atamny, "Mechanical integrity of transparent conductive oxide films for flexible polymer-based displays", Thin Solid Films, 460(1-2), 156 (2004). https://doi.org/10.1016/j.tsf.2004.01.052
  4. Z. Jia, M. B. Tucker, and T. Li, "Failure mechanics of organic-inorganic multilayer permeation barriers in flexible electronics", Compos. Sci. Technol., 71(3), 365 (2011). https://doi.org/10.1016/j.compscitech.2010.12.003
  5. Y. C. Han, E. G. Jeong, H. Kim, S. Kwon, H.-G. Im, B.-S. Bae, and K. C. Choi, "Reliable thin-film encapsulation of flexible OLEDs and enhancing their bending characteristics through mechanical analysis", RCS Adv., 6(47), 40835 (2016).
  6. C.-J. Chiang, C. Winscom, S. Bull, and A. Monkman, "Mechanical modeling of flexible OLED devices", Org. Electron., 10(7), 1268 (2009). https://doi.org/10.1016/j.orgel.2009.07.003
  7. C.-C. Lee, Y.-S. Shih, C.-S. Wu, C.-H. Tsai, S.-T. Yeh, Y.-H. Peng, and K.-J. Chen, "Development of robust flexible OLED encapsulations using simulated estimations and experimental validations", J. Phys. D, 45(27), 275102 (2012). https://doi.org/10.1088/0022-3727/45/27/275102
  8. C.-C. Lee, "Modeling and validation of mechanical stress in indium tin oxide layer integrated in highly flexible stacked thin films", Thin Solid Films, 544, 443 (2013). https://doi.org/10.1016/j.tsf.2013.02.084
  9. Y.-F. Niu, S.-F. Liu, J.-Y. Chiou, C.-Y. Huang, Y.-W. Chiu, M.-H. Lai, and Y.-W. Liu, "Improving the flexibility of AMOLED display through modulating thickness of layer stack structure", J. Soc. Inf. Display., 24(5), 293 (2016). https://doi.org/10.1002/jsid.443
  10. J. Lee, J. Lee, Y. Kim, M. Jang, and K. Choi, "Display Device", U.S. Patent, 9(877), 384 (2018).
  11. Y. H. Jung, "Flexible display apparatus", U.S. Patent, 8(516), 728 (2013).
  12. Z. Zhang and P. S. Drzaic, "Electronic devices with retractable displays", U.S. Patent, 9(625), 948 (2017).
  13. C. J. Campbell, J. Clapper, R. E. Behling, B. Erdogan, H. Z. Beagi, J. T. Abrahamson, and A. I. Everaerts, "Optically Clear Adhesives Enabling Foldable and Flexible OLED Displays", SID Symp. Dig. Tec., 48(1), 2009 (2017).
  14. M.-K Yeh, L.-Y. Chang, M.-R. Lu, H.-C. Cheng, and P.-H. Wang, "Bending stress analysis of flexible touch panel", Microsyst. Technol., 20(8-9), 1641 (2014). https://doi.org/10.1007/s00542-014-2200-1
  15. C.-C. Lee, C.-C. Tsai, J.-C. Chuang, P.-C. Huang, S.-W. Cheng, and Y.-Y Liou, "Adhesion investigation of stacked coatings in organic light-emitting diode display", Architecture Surf. Coat. Technol., 303, 226 (2016). https://doi.org/10.1016/j.surfcoat.2016.03.041
  16. F. Yun, C.-C. Tasi, and J.-L. Tasi, "Characterizing mechanical behaviors of a flexible AMOLED during the debonding process", Microsyst. Technol., 22(10), 2397 (2016). https://doi.org/10.1007/s00542-015-2642-0
  17. J.-Y. Sun, N. Lu, J. Yoon, K.-H. Oh, Z. Suo, and J. J. Vlassak, "Inorganic islands on a highly stretchable polyimide substrate", J. Mater. Res. Technol., 24(11), 3338 (2009). https://doi.org/10.1557/jmr.2009.0417
  18. H. Cheng, J. Wu, M. Li, D.-H. Kim, Y.-S. Kim, Y. Huang, Z. Kang, K. C. Hwang, and J. A. Rogers, "An analytical model of strain isolation for stretchable and flexible electronics", Appl. Phys. Lett., 98(6), 061902 (2011). https://doi.org/10.1063/1.3553020
  19. Y. Shi, J. A. Rogers, C. Gao, and Y. Huang, "Multiple neutral axes in bending of a multiple-layer beam with extremely different elastic properties", J. Appl. Mech., 81(11), 114501 (2014). https://doi.org/10.1115/1.4028465
  20. S. Li, X. Liu, R. Li, and Y. Su, "Shear deformation dominates in the soft adhesive layers of the laminated structure of flexible electronics", Int. J. Solids. Struct., 110, 305 (2017).
  21. Y. Su, S. Li, R. Li, and C. Dagdeviren, "Splitting of neutral mechanical plane of conformal, multilayer piezoelectric mechanical energy harvester", Appl. Phys. Lett., 107(4), 041905 (2015). https://doi.org/10.1063/1.4927677
  22. W. Kim, I. Lee, D. Y. Kim, Y.-Y. Yu, H.-Y. Jung, S. Kwon, W. S. Park, and T.-S. Kim, "Controlled multiple neutral planes by low elastic modulus adhesive for flexible organic photovoltaics", Nanotechnology, 28(19), 194002 (2017). https://doi.org/10.1088/0957-4484/28/19/194002
  23. J. N. Reddy, "Mechanics of laminated composite plates and shells: theory and analysis", CRC press (2004).
  24. M. Nishimura, K. Takebayashi, M. Hishinuma, H. Yamaguchi, and A. Murayama, "A 5.5?inch full HD foldable AMOLED display based on neutral?plane splitting concept", J. Soc. Inf. Display., 27, 480 (2019).
  25. J. T. Abrahamson, H. Z. Beagi, F. Salmon, and C. J. Campbell, "Optically Clear Adhesives for OLED", Organic Light Emitting Diode Technology and Applications. IntechOpen (2019).
  26. J.-G. Seol, D.-J. Lee, T.-W. Kim, and B.-J. Kim, "Reliability study on rolling deformation of ITO thin film on flexible substrate", J. Microelectron. Packag. Soc., 25(1), 29 (2018). https://doi.org/10.6117/KMEPS.2018.25.1.029
  27. M.-K. Lee, I.-W. Suh, H.-S. Jung, J.-H. Lee, and S.-H. Choa, "Warpage of Flexible OLED under High Temperature Reliabililty Test", J. Microelectron. Packag. Soc., 23(1), 17 (2016). https://doi.org/10.6117/kmeps.2016.23.1.017