DOI QR코드

DOI QR Code

Evaluation of Workability and Strength in Concrete with Cellulose Fibers

셀룰로오즈 섬유 함유 콘크리트의 작업 성능 및 강도 평가

  • Ryu, Hwa-Sung (Hanyang Experiment and Consulting, Hanyang University ERICA) ;
  • Lee, Sang-Seok (Department of Civil and Environmental Engineering, Hannam University) ;
  • Kwon, Seung-Jun (Department of Civil and Environmental Engineering, Hannam University)
  • 류화성 ((주)한양E&C) ;
  • 이상석 (한남대학교 건설시스템공학과) ;
  • 권성준 (한남대학교 토목환경공학과)
  • Received : 2020.04.20
  • Accepted : 2020.06.19
  • Published : 2020.06.30

Abstract

Cracking due to material behavior like drying shrinkage easily occurs since tensile strength in concrete is very low at initial curing stage. In this paper, workability such as air content and slump was evaluated on CFC(Cellulose Fiber Concrete) with 0.0 ~ 2.0% of fiber addition, and the tests for tensile/compressive strength were performed. With increasing addition ratio of fiber, air content and slump kept similar level to 1.0kg/㎥ of addition ratio, and this trend was effective to 2 hours after mixing. Strength was enhanced with increasing addition ratio, which showed 7.0 ~ 9.0% for compressive strength and 7.0 ~ 22.0% for tensile strength, respectively. The tensile strength increased relatively more, which show the addition of cellulose fiber was very effective to crack resistance. The workability in CFC can be guaranteed for 2 hours in the following conditions like 2 minutes of mixing period and 1.0kg/㎥ of addition ratio of fiber.

콘크리트는 초기에 인장강도가 확보되지 못하므로 건조수축과 같은 재료적인 균열이 발생하게 된다. 본 연구에서는 셀룰로오즈 섬유를 0.0 ~ 2.0% 혼입한 콘크리트를 대상으로 공기량, 슬럼프와 같은 작업성을 평가하였으며, 재령에 따른 압축 및 인장강도를 평가하였다. 혼입률이 증가할수록 1.0kg/㎥ 수준에서는 공기량 및 슬럼프에서 저하를 확인할 수 없었으며, 이러한 작업성은 2시간까지 유효하게 작용하였다. 강도 평가에서는 혼입률이 증가할수록 인장 및 압축강도가 개선되었으며, 압축강도의 경우 7 ~ 9%수준으로, 인장강도에서는 7 ~ 22% 수준으로 증가하였다. 인장강도에서 증가율이 상대적으로 크게 평가되었는데, 이러한 효과는 균열저항성에 크게 도움을 주리라 판단된다. 본 연구를 통하여 2분간의 혼입 시간, 셀룰로오즈 섬유 1.0kg/㎥의 혼입률 수준이면 120분간 작업성에 큰 영향이 없으리라 평가된다.

Keywords

References

  1. ACI 207.2 R-95. (2002). Effect of Restraint, Volume Change and Reinforcement on Cracking of Massive Concrete, ACI Committee 207, USA.
  2. ACI 544.4R-88. (1999). Design Consideration for Steel Fiber Reinforced Concrete, ACI Committee 544, USA.
  3. Cho, C.G., Han, S.J., Kwon, M.H., Lim, C.K. (2012). Seismic performance evaluation of reinforced concrete columns by applying steel fiber - reinforced mortar at plastic hinge region, Journal of the Korea Concrete Institute, 24(3), 241-248 [in Korean]. https://doi.org/10.4334/JKCI.2012.24.3.241
  4. Choi, J.I., Lee, B.Y., Ranade, R., Li, V.C., Lee, Y. (2016). Ultra - high - ductile behavior of a polyethylene fiber - reinforced alkali - activated slag - based composite, Cement and Concrete Composites, 70, 153-158. https://doi.org/10.1016/j.cemconcomp.2016.04.002
  5. Gerard, B., Marchand, J. (2000). Influence of cracking on the diffusion properties of cement - based materials : Part 1 : Influence of continuous cracks on the steady - state regime, Cement and Concrete Research, 30(1), 37-43. https://doi.org/10.1016/S0008-8846(99)00201-X
  6. Kanda, T., Li, V.C. (2006). Practical design criteria for saturated pseudo strain hardening behavior in ECC, Journal of Advanced Concrete Technology, 4(1), 59-72. https://doi.org/10.3151/jact.4.59
  7. Karahan, O., Atis, C.D. (2011). The durability properties of polypropylene fiber reinforced fly ash concrete, Materials and Design, 32(2), 1044-1049. https://doi.org/10.1016/j.matdes.2010.07.011
  8. Kim, D.S., Khil, B.S., Goo, S.H., Moon, G.H., Kim, J.W., Park, J.S. (2010). Application technology of special concrete realized resistance for crack and watertightness simultaneously, Journal of the Korea Concrete Institute, 22(1), 52-58 [in Korean].
  9. Kwon, S.J., Jo, H.J., Park, S.S. (2014). Applicability evaluation and development of high strength spacer with plastic fiber and slag cement, Journal of the Korea Institute for Structural Maintenance and Inspection, 18(4), 92-98 [in Korean]. https://doi.org/10.11112/JKSMI.2014.18.4.092
  10. Meddah, M.S., Bencheikh, M. (2009). Properties of concrete reinforced with different kinds of industrial waste fibre materials, Construction and Building Materials, 23(10), 3196-3205. https://doi.org/10.1016/j.conbuildmat.2009.06.017
  11. Mohamed, M.A.S., Ghorbel, E., Wardeh, G. (2010). Valorization of micro - cellulose fibers in self - compacting concrete, Construction and Building Materials, 24(12), 2473-2480. https://doi.org/10.1016/j.conbuildmat.2010.06.009
  12. Naaman, A.E., Wongtanakitcharoen, T., Hauser, G. (2005). Influence of different fibers on plastic shrinkage cracking of concrete, ACI Materials Journal, 102(1), 49-58.
  13. Neithalath, N., Weiss, J., Olek, J. (2004). Acoustic performance and damping behavior of cellulose - cement composites, Cement and Concrete Composites, 26(4), 359-370. https://doi.org/10.1016/S0958-9465(03)00020-9
  14. Park, S.H., Kim, D.J., Ryu, G.S., Koh, K.T. (2012). Tensile behavior of ultra high performance hybrid fiber reinforced concrete, Cement and Concrete Composites, 34(2), 172-184. https://doi.org/10.1016/j.cemconcomp.2011.09.009
  15. Pichor, W., Petri, M., Deja, J. (2000). Properties of FRC with modified cellulose fibers, Fifth International RILEM Symposium on Fibre-Reinforced Concrete (FRC). RILEM Publications SARL, 643-652.
  16. Rasouli, H.R., Golestani-Fard, F., Mirhabibi, A.R., Nasab, G.M., Mackenzie, K.J.D., Shahraki, M.H. (2015). Fabrication and properties of microporous metakaolin - based geopolymer bodies with polylactic acid (PLA) fibers as pore generators, Ceramics International, 41(6), 7872-7880. https://doi.org/10.1016/j.ceramint.2015.02.125
  17. Ryu, H.S., Shin, S.H., Kwon, S.J. (2019). Strength properties of cement mortar with slurry - typed cellulous fiber, Journal of the Korean Recycled Construction Resources Institute, 7(3), 210-215 [in Korean]. https://doi.org/10.14190/JRCR.2019.7.3.210
  18. Song, H.W., Cho, H.J., Park, S.S., Byun, K.J., Maekawa, K. (2001). Early - age cracking resistance evaluation of concrete structures, Concrete Science and Engineering, 3(10), 62-72.
  19. Ulm, F.J., Bažant, Z.P., Wittmann, F.H., Bazant, Z.P. (2001). Creep, shrinkage and durability mechanics of concrete and other quasi-brittle materials, Elsevier Science Ltd, Cambridge, England, 735-740.
  20. Uno, P.J. (1998). Plastic shrinkage cracking and evaporation formulas, ACI Materials Journal, 95(4), 365-375.
  21. Win, P.P., Watanabe, M., Machida, A. (2004). Penetration profile of chloride ion in cracked reinforced concrete, Cement and Concrete Research, 34(7), 1073-1079. https://doi.org/10.1016/j.cemconres.2003.11.020
  22. Yoo, S.W., Kwon, S.J., Jung, S.H. (2012). Analysis technique for autogenous shrinkage in high performance concrete with mineral and chemical admixtures, Construction and Building Materials, 34, 1-10. https://doi.org/10.1016/j.conbuildmat.2012.02.005