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Abstract. We show that selfadjoint operator extensions of minimal second order differ-

ence operators have only discrete spectrum when the odd order coefficient is unbounded

but grows or decays according to specific conditions. Selfadjoint operator extensions of

minimal differential operator under similar growth and decay conditions on the coefficients

have a absolutely continuous spectrum of multiplicity one.

1. Introduction

We consider the second order symmetric differential operators generated by

(1.1) τy(x) = −(p1(x)y
′(x))′ + i[q1(x)y

′(x) + (q1(x)y(x))
′] + p0(x)y(x).

defined on L2([0,∞)) and their discrete counterparts

(1.2) Ly(t) = −∆[(p1(t)∆y(t− 1)] + i[q1(t)∆y(t− 1) + ∆(q1(t)y(t))] + p0(t)y(t)

defined on ℓ2(N). In (1.1), y′(x) is the derivative of y(x) with respect to x for
x ∈ [0,∞) while in (1.2) ∆f(t) = f(t+1)−f(t) with t ∈ N. Here, the coefficients p0,
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p1 and q1, as functions of either x or t, are real valued functions that are either twice
differentiable in the case of (1.1) or the second difference tends to zero as t → ∞
for the case of (1.2). Throughout this text, the variable x will be assumed to be
on the half-line [0,∞) while t will be assumed to be in N. Many authors, including
one of the authors in this paper (see the papers [4, 5] by Behncke and Nyamwala),
have reported that second order operators have very similar spectral results and
that significant differences can only be achieved in order four or more, and with
unbounded coefficients. This conclusion is largely dependent on the analysis of order
two operators with either bounded coefficients or unbounded even order coefficients.
Actually, in Section 4.1 of [5], the degenerate second order case, conditions (4.1) and
(4.13) imply that the results stated in Proposition 4.1 of the same reference is for
bounded power coefficients. Even in the papers by Remling [7, 8], the analysis for
the existence of absolutely continuous spectrum was done for even order coefficients,
namely, the potential for the case of one-dimensional Schrödinger operators. His
results included the Oracle theorem that predicts the potential and general results
on the approach to certain limit potentials for the existence of absolutely continuous
spectrum in the discrete case. For unbounded odd order coefficients, this is not the
case as the results in this paper reveal. Here, we consider uniform growth conditions
on the coefficients as follows:

(1.3) |q1(.)| ↗ ∞, p0, p1 = o(q1), ∀x ∈ [0,∞) and ∀t ∈ N.

Further, we assume that the coefficients of (1.1) obey the following decay conditions.

(1.4)
f ′

f
∈ L2,

f ′′

f
, (
f ′

f
)2 ∈ L1, f = p0, p1, q1.

with their discrete counterparts, coefficients of (1.2), obeying

(1.5)
∆2f

f
,

(
∆f

f

)2

∈ ℓ1,
∆f

f
∈ ℓ2, f = p0, p1, q1.

In order to obtain deficiency indices and spectral results, we have solved the equa-
tions τy(x) = zy(x) and Ly(t) = zy(t) for (1.1) and (1.2) respectively. Here, z is
the spectral parameter. Following Behncke and Hinton [3] as well as in the paper
by Hinton and Schneider [6], we convert (1.1) into its first order system of the form

JY ′ = (Az +B)Y, A = A∗ > 0, B = B∗, with J =

[
0 −1
1 0

]
.

In this particular case A = diag(1, 0). One, therefore, defines a symmetric operator
T generated by (1.1) on a Hilbert space L2

A([0,∞)), the space of C2-valued A-square
integrable functions with scalar products given by

⟨g, h⟩A =

∫ ∞

0

g∗(x)A(x)h(x)dx.
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So T is defined by Ty = A−1(Jy′ − By), and a regularity condition is required for
the formal definition of T . If γ is a constant such that Jy′ −By = γAy for some y
with ∥y∥A = 0, then y = 0 and

(1.6) Jy′ −By = Af, with ∥y∥A = 0, ∥f∥A = 0.

This condition will hold for any constant γ and thus the deficiency indices of the
minimal operator generated by (1.1) will be independent of the spectral parameter
z. This regularity condition can be dropped by construction of a non-zero kernel of
the operator generated by (1.1) and with added boundary conditions. The operator
T is then constructed by restricting its resolvent to the orthogonal complement
of the kernel. In line with Hinton and Schneider [6], let y ∈ L2([0,∞)) then the
maximal operator T ∗ generated by τ is defined by

D(T ∗) =
{
y ∈ L2([0,∞)) : y1, y2 are absolutely continuous in [0,∞)

}
.

Here, we require that τy ∈ L2([0,∞) and τy = T ∗y for all y ∈ D(T ∗), and y1 and
y2 are quasiderivatives of (1.1) as defined in Walker [9]. Restricting this domain
to only functions of y with compact support within [0,∞) results in a pre-minimal
operator whose closure is the required minimal operator that we will denote by T .
If z is a spectral parameter with Imz > 0, then define a set of indices (N+, N−)
as the deficiency indices of T where N+ = dimNT∗−z̄ and N− = dimNT∗−z are
the dimensions of the null spaces of T ∗ − z̄I and T ∗ − zI respectively. By the
von Neumann Theorems [10], if N− = N+ ̸= 0, then T has selfadjoint operator H
defined by

D(H) = D(T )u {y + V y : y ∈ N(T ∗ − zI)} ,
where V is a uniquely determined isometric mapping such that V : N(T ∗ − zI) →
N(T ∗ + zI). In the case of non-limit point case, boundary conditions are required
at infinity. For more details, see [6].

A similar regularity condition is achieved for difference operators generated by
(1.2) if we have a first order form of

J∆Y (t)[zW(t) + P(t)]R(Y (t)), W(t) = diag(1, 0) P(t) = P∗(t),

where Y (t) = (x(t), u(t))tr, tr means transpose, and R(Y (t)) = (x(t + 1), u(t)). R
is a partial shift operator, and x(t) and u(t) are quasi-differences [11]. Thus there
exists an interval I ⊂ N such that for any complex number z and non-trivial solution
y(t) of (1.2),

(1.7)
∑
t∈I

R(y(t))∗W(t)R(y(t)) > 0.

On the other hand the maximal difference operator generated by (1.2) is given by

D(L∗) =
{
y ∈ ℓ2([0,∞)) : there exists ρ ∈ ℓ2([0,∞)) such that

J∆Y (t)− P(t)RY (t) = W(t)ρ(t), t ∈ [0,∞), L∗y = Ly} .
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Assume that for some natural number n, we restrict the domain of L∗ using the
boundary conditions such that y(0) = y(t) = 0, for all t ≥ n + 1, then we obtain
a pre-minimal difference operator whose closure is a minimal difference operator.
We denl denote this by L. Just like in the continuous case, one defines the defi-
ciency indices and the selfadjoint operator extension of L whenever these indices
are equal and L is not selfadjoint. For more details, see [11]. The deficiency in-
dices and spectral results in this paper have been obtained through asymptotic
integration for differential operators and asymptotic summation for difference op-
erators. Asymptotic integration is based on a theorem of Levinson which states
that if Y ′(x, z) = [Λ(x, z)+R(x, z)]Y (x, z) is a first order system of (1.1) such that
Λ = diag(λk(x, z)) for k = 1, 2 satisfies the z-uniform dichotomy condition and the
elements of R(x, z) are absolutely integrable, then the solutions of the system are
of the form

(1.8) yk(x, z) = (ek(x, z) + rk(x, z)) exp

(∫ x

0

λk(s, z)ds

)
.

ek(x, z) is a normalised eigenvector while rk(x, z) = o(1) is the contribution to
eigenvalue λk(x, z) as a result of diagonalisation.

On the other hand, asymptotic summation is based on a theorem of Levinson-
Benzaid-Lutz which states that if Y (t+ 1, z) = [Λ(t, z) + R(t, z)]Y (t, z) is the first
order system of (1.2) such that Λ(t, z) satisfies the z-uniform dichotomy condition
and elements of R(t, z) are absolutely summable, then the solutions of (1.2) are of
the form

(1.9) yk(t, z) = (ek(t, z) + rk(t, z))

t−1∏
0

(λk(l, z)) .

Our main results show that when q1(x) is unbounded and | q1(x) |−1 is not inte-
grable, then the selfadjoint operator extension of the minimal differential operator
generated by (1.1) has absolutely continuous spectrum, of multiplicity one, either
contained on half line if q1(x) > 0 or full real line if q1(x) < 0. On the other hand,
if q1(t) is unbounded and | q1(t) |−1 is not summable, then the selfadjoint operator
extension of the minimal difference operator generated by (1.2) is pure discrete.
These results, in addition to those in the cited references, settles in a general way,
the problem of comparative analysis of spectral theory of second order difference
operators and their continuous counterparts.

2. Results

Theorem 2.1. Let T be the minimal differential operator generated by (1.1) on
L2[0,∞) and assume that conditions (1.3), (1.4) and (1.6) are satisfied. Then

(i) Eigenvalues of (1.1) satisfy the uniform dichotomy condition.
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(ii) If |q1(x)|−1 is integrable, then defT = (2, 2) and σ(H) is discrete.

(iii) If |q1(x)|−1 is not integrable, then defT = (1, 1). Suppose q1(x) > 0 then
σac(H) ⊂ [p̄0,∞) and if q1(x) < 0 then σac(H) = R with spectral multiplicity
1. Here p̄0 = lim sup p0(x).

Proof. (i) Here, we apply asymptotic integration. This requires that (1.1) is con-
verted into its first order form using quasiderivatives [9]. These are of the form:

y1 = y(x) y2 = p1(x)y
′(x)− iq1(x)y(x).

This leads to a first order system of the form

(2.1) Y ′ = AY, Y =

[
y1
y2

]
A =

[
iq1
p1

1
p1

p0 − q21
p1

i q1p1

]
.

The coefficients are functions of x and p0 should be interpreted as p0(x)−z. Asymp-
totic integration in line with Levinson’s theorem requires the eigenvalues of A.
Computing the charateristic polynomial of A through det(A− λI), multiplying the
resultant polynomial by −p1 and substituting λ with −iν, which is a unitary trans-
formation and thus the spectrum is invariant, results into a Fourier polynomial of
the form

(2.2) PF (ν, x, z) = p1ν
2 + 2q1ν + p0.

There exists finitely many values of z where the roots of the polynomial (2.2) are
repeated. The reader can refer to [1] to see how to handle the more generale case
of 2nth order operators and how to handle intervals where such polynomials have
repeated roots. The remaining analysis is now restricted only to the interval where
the two roots are distinct. Since we need to analyse the dichotomy condition, we
will take z = z0 + iη where z0 = Rez and Imz = η, η > 0. One thus computes the
ν roots of the polynomial and by backward substitution, obtains the eigenvalues λ
which are analytic functions of x and z, approximately given by;

λ1(x, z) =
2iq1
p1

− (p0 − z0)i

2q1
− η

2q1
, λ2(x, z) =

(p0 − z0)i

2q1
+

η

2q1
.

Here, Reλ1(x, z) =
−η
2q1

+ O(q−2
1 ), and Reλ2(x, z) =

η
2q1

+ O(q−2
1 ). In its simplest

form, the z-uniform dichotomy condition requires that Re(λ1(x, z) − λ2(x, z)) is
of constant sign modulo integrable terms. Even if q1(x) < 0 or q1(x) > 0, then
either Reλ1(x, z) > 0 or Reλ1(x, z) < 0 respectively. A similar analysis is true for
Reλ2(x, z). This implies that in each case of the sign of q1(x), one eigensolution will
be bounded while the other is unbounded. This is the required dichotomy condition.

(ii) The first order system can now be diagonalised twice using eigenvectors. Ap-
proximately, the diagonalising matrix of A in (2.1) with only the leading terms
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is given by M(x, z) =

[
1 1
iq1 −iq1

]
. Here, detM(x, z) = O(q1(x)). Using

this matrix to diagonalise the system, by making a transformation of the form
Y (x, z) = M(x, z)W (x, z), we have

W ′(x, z) = [Λ(x, z) +R(x, z)]W (x, z),

Λ(x, z) = diag(λ1(x, z) + r11(x, z), λ2(x, z) + r22(x, z)).

Here, r11(x, z) = O(q−1
1 (x)), r22(x, z) = O(q−2

1 (x)) are correction terms added to
the diagonals as a result of diagonalisation. The remainder matrix R(x, z) has
Rjj(x, z) = 0, j = 1, 2 while, Rjl = O(f ′ · q−1

1 ), j, l = 1, 2, j ̸= l. These terms are
both L2 and L1 terms. A second diagonalisation is possible and for the details, see
[2]. The deficiency indices can be read off from the asymptotics of the eigenvalue
solution as Imz ↘ 0. The form of the solution is given by

yj(x, z) = (ej + rj(x, z)).exp

(∫ x

0

∓η

|2q1(s)|
ds

)
, j = 1, 2.

Thus assume |q1(x)|−1 is integrable, then both the solutions are square integrable
in the upper and lower half planes and hence results in defT = (2, 2). All the
solutions are z-uniformly square integrable and hence discrete spectrum.

(iii) If |q1(x)|−1 is not integrable, then y1(x, z) is square integrable in the upper
half plane if q1(x) > 0 and fails to be square integrable in the lower half plane.
y2(x, z) is square integrable in the lower half plane if q1(x) > 0 but fails in the
upper half plane. The situation is reversed if q1(x) < 0. In each half plane with the
appropriate sign of q1(x), defT = (1, 1). If |q1(x)|−1 is not integrable, then the
correction term is given by ∓η

2|q1(x)| for yj(x, z), j = 1, 2 solutions. Thus y1(x, z) is

square integrable since Reλ1(x, z) =
−η

2|q1(x)| , η > 0 but loses its square integrability

as η −→ 0+. In order to see this, note that

∥y1∥2 = c · lim
x→∞

exp

(∫ x

0

−η

|q1(s)|
ds

)
,

for some positive constant c. This constant c is as result of the terms e1 + r1(x, z)
where e1 is the normalized eigenvector and r1(x, z) is the correction term after diag-
onalisation and is bounded because of the assumptions in (1.3) and (1.4). Therefore,
it is the exponential term that determines the boundedness of ∥y1∥2. When η > 0
and as x → ∞, the term ∥y1∥2 decays to zero. But as η → 0 from the right, the rate
of decay of ∥y1∥2 slowly decreases until it reaches the boundary point η = 0 where
any small perturbation can easily make ∥y1∥2 unbounded. Thus for q1(x) < 0,
it implies that −∞ < z < ∞, hence σac(H) = R with spectral multiplicity 1.
On the other hand, y2(x, z) is not integrable since Reλ2(x, z) = η

2|q1(x)| , η > 0 .

Thus for q1(x) > 0, it implies that p̄0 < z < ∞, hence σac(H) ⊂ [p̄0,∞), where
p̄0 = lim sup p0(x). 2
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Theorem 2.2 Let L be the minimal difference operator generated by (1.2) on
ℓ2[0,∞) and assume that conditions (1.3), (1.5) and (1.7) are satisfied, then the
eigenvalues of (1.2) satisfy the z-uniform dichotomy condition, the defL = (1, 1)
and the spectrum is pure discrete.

Proof. In this particular case, we apply asymptotics. This requires that (1.2) is
converted into first order system. Here, we use quasi-differences as stated in [11].
We let x(t) = y(t− 1), u(t) = p1(t)(∆y(t− 1))− iq1(t)y(t). Taking these as vector
functions, we may assume, Y (t) = {x(t), u(t)}tr. These lead to

(2.3) ∆

[
x(t)
u(t)

]
=

[
iq1
p1

1
p1

p0 − q21
p1

iq1
p1

][
x(t+ 1)
u(t)

]
.

The coefficients are functions of t with p0 interpreted as p0(t)− z. The form (2.3)
is one of many ways of writing (1.2) in terms of its first order system and has been
applied extensively in [11]. The form that is easily convertible to Levinson-Benzaid-
Lutz form is given by,

(2.4)

[
x(t+ 1)
u(t+ 1)

]
=

[
S(t, z)

] [ x(t)
u(t)

]
, S(t, z) =

[
p1

p1−iq1
1

p1−iq1

p0 − q21
p1

1 + iq1
p1

]
For the eigenvalues of (1.2), we compute the characteristic polynomial of S(t, z)

given by P(t, λ, z) = det(S(t, z)− λI). Therefore,

P(t, λ, z) = λ2 − λ

{
1 +

iq1
p1

+
p1

p1 − iq1

}
− p0 − q21

p1 − iq1
.

By application of binomial expansion and approximating to O(q−2
1 (t)), we obtain

λ-roots which are analytic functions of t and z:

λj(t, z) =
1

2

{(
1 +

iq1
p1

+
p1

p1 − iq1

)
± iq1

p1
+O(q−2

1 )

}
, j = 1, 2.

Explicitly, this implies that

(2.5) λ1(t, z) ≈
iq1
p1

+
1

2
+O(q−1

1 ), λ2(t, z) ≈
1

2
+

ip1
2q1

+O(q−2
1 ).

These two eigenvalues satisfy the z-uniform dichotomy condition. In its simplest

form, dichotomy condition states that for any δ > 0, however small, | λ1(t,z)
λ2(x,z)

| is
either strictly greater than 1 + δ or strictly less than 1− δ. Since |λ1(t, z)| > 1 for

all t ∈ N because of (1.3) and |λ2(t, z)| < 1, it follows that | λ1(t,z)
λ2(x,z)

| > 1 + δ which

is the required uniform dichotomy condition.
The system can now be converted into Levinson’s-Benzaid-Lutz form [4, 5]

through diagonalisations. In this case, the diagonalising matrix, if the first com-

ponent of the eigenvectors are normalised, is of the form M(t, z) =

[
1 1
q21
p1

− iq1
2

]
.
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Even though the diagonalizing matrix is unbounded, its inverse is bounded. Here,
the (detM(t, z))−1 = O(p1(t)q

−2
1 (t)). The system is then transformed using[
x(t)
u(t)

]
= M(t, z)W (t, z).

After diagonalisation we have a first order of the form

W (t+ 1, z) = Λ1(t, z) +R1(t, z)]W (t, z),

Λ1(t, z) = diag(λ1(t,z) + ϱ1(t, z), λ2(t, z) + ϱ2(t, z)).

The ϱk(t, z) terms, k = 1, 2, are obtained as a result of diagonalisations and are
basically bounded and summable. The remainder matrix after the first diagonalisa-
tion, R1(t, z), has zeros in its main diagonal and the off diagonal terms are given by
(R1)jl(t, z) = O(q−1

1 (t)) ·∆f(t), l, j = 1, 2, j ̸= l, f(t) = p0(t), p1(t), q1(t). These

are ℓ2 and ℓ1 terms by assumptions in (1.5). We now construct a matrix S̃(t, z)
consisting of Λ1(t, z) and ℓ2 terms from R1(t, z) then a second diagonalisation is

possible using the eigenvectors of S̃(t, z). For more details, see [2]. After the sec-
ond diagonalisation, the solutions will be given by the form (1.9). Thus the square
summability of the eigensolutions are determined by

lim
t→∞

⟨yk(t, z), yk(t, z)⟩ ≈ lim
t→∞

Πl=t−1
l=0 |λk(l, z)|2; k = 1, 2.

This leads to limt→∞ |y1(t, z)|2 = ∞ and limt→∞ |y2(t, z)|2 = 0. This is because
|λ1(t, z)| > 1 and |λ2(t, z)| < 1. A bounded solution implies that the solution is
square summable and hence contribute to deficiency indices of L as shown by [11].
This will be true for y2(t, z) for all z both in the upper and lower halves of the
complex plane. defL = (1, 1). The spectrum of all self-adjoint operator extension
will consist of only eigenvalues and hence pure discrete. 2
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