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Abstract. Minkowski’s inequality is one of the most famous inequalities in mathematics,

and has many applications. In this paper, we give Minkowski’s inequality for generalized

variational integrals that are based on a supermultiplicative function. Our results include

previous results about fractional integral inequalities of Minkowski’s type.

1. Introduction

Minkowski’s inequality is unequivocally one of the most famous inequalities in
mathematics. The well-known Minkowski integral inequality is given as follows:

Theorem 1.1.([1]) Let s ≥ 1 and
∫ b
a
fs (x) dx and

∫ b
a
gs (x) dx be finite. Then(∫ b

a

(fs (x) + gs(x)) dx

) 1
s

≤

(∫ b

a

fs (x) dx

) 1
s

+

(∫ b

a

gs(x)dx

) 1
s

.

The following reverse Minkowski integral inequality was obtained by Bougoffa
[3] in 2006.

Theorem 1.2.([3]) Let f and g be positive functions satisfying

0 < m ≤ f(x)

g(x)
≤M,

then (∫ b

a

fs (x) dx

) 1
s

+

(∫ b

a

gs(x)dx

) 1
s

≤ c

(∫ b

a

(fs (x) + gs(x)) dx

) 1
s

,
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where c = M(m+1)+(M+1)
(m+1)(M+1) .

Variational integrals, which generalize fractional integrals, play an important
role in all fields of mathematics [2, 5]. They are versatile, and have wide application
in applied mathematics.

In 2010, Agrawal [2] introduced a generalized variational integral which gener-
alizes the Riemann-Liouville fractional integral.

Definition 1.3.([2]) A generalized variational integral of order α of a real function
f is defined as

Sα〈a,t,b,p,q〉f(t) = p

∫ t

a

kα(t, s)f(s)ds+ q

∫ b

t

kα(s, t)f(s)ds = SαP f(t),

where t ∈ (a, b), p, q ∈ R, P = 〈a, t, b, p, q〉 and kα(t, s) is a kernel which is nonneg-
ative and depends upon a parameter α > 0.

Remark 1.4. Let kα(t, s) := 1
Γ(α) (t− s)α−1 and P = 〈a, t, b, p, q〉.

(i) If P = P1 = 〈a, t, b, 1, 0〉, then the left Riemann-Liouville fractional integral
yields i.e,

SαP1
f(t) =

∫ t

a

1

Γ(α)
(t− s)α−1f(s)ds = Jαa+f(t).

(ii) If P = P2 = 〈a, t, b, 0, 1〉, then the right Riemann-Liouville fractional integral
is concluded as

SαP2
f(t) =

∫ b

t

1

Γ(α)
(s− t)α−1f(s)ds = Jαb−f(t).

(iii) If P = P3 = 〈a, t, b, 1
2 ,

1
2 〉, then we have the Riesz fractional integral as follows

SαP3
f(t) =

1

2
SαP1

f(t) +
1

2
SαP2

f(t) =
1

2
Jαa+f(t) +

1

2
Jαb−f(t).

In 2010, Dahmani [4] proved the following inequalities related to Minkowski’s
inequality for Riemann-Liouville fractional integrals; these generalize the results in
[3].

Theorem 1.5.([4]) Let α > 0, s ≥ 1 and f, g be positive on [0,∞) such that t >

0, Jα0+f
s(t) <∞ and Jα0+g

s(t) <∞. If 0 < m ≤ f(τ)
g(τ) ≤M, τ ∈ [0, t], then

[
Jα0+f

s(t)
] 1

s

+
[
Jα0+g

s(t)
] 1

s ≤ 1 +M(m+ 2)

(m+ 1)(M + 1)

[
Jα0+(f + g)s(t)

] 1
s

.
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Theorem 1.6.([4]) Suppose that α > 0, s ≥ 1 and f, g are two positive functions

on (0,∞) such that t > 0, Jαfs(t) < ∞ and Jαgs(t) < ∞. If 0 < m ≤ f(τ)
g(τ) ≤ M ,

τ ∈ [0, t], then[
Jαfs(t)

] 2
s

+ Jαgs(t)
] 2

s ≥ (
(M + 1)(m+ 1)

M
− 2)

[
Jαfs(t)

] 1
s
[
Jαgs(t)

] 1
s

.

In this article, we are going to extend these theorems for the generalized varia-
tional integral.

2. Main Results

In this section, we give a generalized Minkowski type inequality for the general-
ized variational integral. Before we begin our results we need the following definition
and lemma.

Definition 2.1.([6, 7, 8]) A function ϕ : (0,∞)→ (0,∞) is called C-submultiplicative
with C > 0 if

(2.1) ϕ(xy) ≤ Cϕ(x)ϕ(y),

for all x, y ∈ (0,∞). If inequality (2.1) is reversed, then ϕ will be called C-
supermultiplicative.

In the following theorem, we give a more general version of Theorem 1.5 based
on a supermultiplicative function.

Theorem 2.2. Let f and g be positive functions. Let two functions ϕi : (0,∞)→
(0,∞) , i = 1, 2 be increasing such that ϕ1 is M1-supermultiplicative and ϕ2 is M2-
submultiplicative and SαPϕi(f)(t) and SαPϕi(g)(t) are finite. If there exist C1, C2 ∈
(0,∞) such that

(f + g) (t) ≥ max{C1f(t), C2g(t)},

then

ϕ2

[
SαPϕ1(f)(t)

]
+ ϕ2

[
SαPϕ1(g)(t)

]
6M2

(
ϕ2(

1

M1ϕ1(C1)
) + ϕ2(

1

M1ϕ1(C2)
)

)
ϕ2

[
SαPϕ(f + g)(t)

]

Proof. Since (f + g) (t) ≥ max{C1f(t), C2g(t)} and ϕ1 is increasing, then

ϕ1(C1f (t)) ≤ ϕ1(f + g) (t) ,(2.2)

ϕ1(C2g (t)) ≤ ϕ1(f + g) (t) ,(2.3)
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If ϕ1 is M1-supermultiplicative, then by Definition 2.1, (2.2) and (2.3), we obtain

M1ϕ1(C1)ϕ1(f(t)) ≤ ϕ1(f + g)(t),(2.4)

M1ϕ1(C2)ϕ1(g(t)) ≤ ϕ1(f + g)(t).(2.5)

Multiplying both sides of (2.4) and (2.5) by pkα(t, τ) and integrating respect to τ
on [a, t], we have

pM1ϕ1(C1)

∫ t

a

kα(t, τ)ϕ1(f) (τ) dτ ≤ p
∫ t

a

kα(t, τ)ϕ1(f + g)(τ)dτ,(2.6)

pM1ϕ1(C2)

∫ t

a

kα(t, τ)ϕ1(g) (τ) dτ ≤ p
∫ t

a

kα(t, τ)ϕ1(f + g)(τ)dτ.(2.7)

Similarly,

qM1ϕ1(C1)

∫ b

t

kα(τ, t)ϕ1(f)dτ ≤ q
∫ b

t

kα(τ, t)ϕ1(f + g)(τ)dτ.(2.8)

qM1ϕ1(C2)

∫ b

t

kα(τ, t)ϕ1(g)dτ ≤ q
∫ b

t

kα(τ, t)ϕ1(f + g)(τ)dτ.(2.9)

Now by adding (2.6) and (2.8), we have

pM1ϕ1(C1)

∫ t

a

kα(t, τ)ϕ1(f) (τ) dτ + qM1ϕ1(C1)

∫ b

t

kα(τ, t)ϕ1(f)dτ

≤ p
∫ t

a

kα(t, τ)ϕ1(f + g)(τ)dτ + q

∫ b

t

kα(τ, t)ϕ1(f + g)(τ)dτ,

which is equivalent to

M1ϕ1(C1)[SαPϕ1(f) (t)] ≤ SαPϕ1(f + g) (t)

SαPϕ1(f)(t) ≤ 1

M1ϕ1(C1)
[SαPϕ1(f + g)(t)]

Since ϕ2 is M2-submultiplicative, then

(2.10) ϕ2

[
SαPϕ1(f)(t)

]
≤M2ϕ2(

1

M1ϕ1(C1)
)ϕ2

[
SαPϕ1(f + g)(t)

]
.

Now by adding (2.7) and (2.9), we have

pM1ϕ1(C2)

∫ t

a

kα(t, τ)ϕ1(g) (τ) dτ + qM1ϕ1(C2)

∫ b

t

kα(τ, t)ϕ1(g)dτ

≤ p
∫ t

a

kα(t, τ)ϕ1(f + g)(τ)dτ + q

∫ b

t

kα(τ, t)ϕ1(f + g)(τ)dτ,
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which is equivalent to

M1ϕ1(C2)[SαPϕ1(g) (t)] ≤ SαPϕ1(f + g) (t) .

Then

SαPϕ1(g)(t) ≤ 1

M1ϕ1(C2)
[SαPϕ1(f + g)(t)]

Hence,

(2.11) ϕ2

[
SαPϕ(g)(t)

]
≤M2ϕ2(

1

M1ϕ1(C2)
)ϕ2

[
SαPϕ1(f + g)(t)

]
.

By adding (2.10) and (2.11),

ϕ2

[
SαPϕ1(f)(t)

]
+ ϕ2

[
SαPϕ1(g)(t)

]
6M2

(
ϕ2(

1

M1ϕ1(C1)
) + ϕ2(

1

M1ϕ1(C2)
)

)
ϕ2

[
SαPϕ1(f + g)(t)

]
we obtain the desired result. 2

If ϕ1(x) = xp, ϕ2(x) = x
1
p , p ≥ 1,M1 = M2 = 1, C1 = M+1

M and C2 = m+ 1 in
Theorem 2.2, then the following corollary is achieved.

Corollary 2.3. Let α > 0, p ≥ 1 and f, g be two positive functions on [0,∞) such

that SαP fp(t) and SαP gp(t) are finite. If 0 < m ≤ f(τ)
g(τ) ≤M, τ ∈ [0, t], then[

SαP fp(t)
] 1

p

+
[
SαP gp(t)

] 1
p ≤ 1 +M(m+ 2)

(m+ 1)(M + 1)

[
SαP (f + g)p(t)

] 1
p

.

If P = P1 = 〈a, t, b, 1, 0〉 in Corollary 2.3, then the following result holds.

Corollary 2.4.([4]) Let α > 0, s ≥ 1 and f, g be positive on [0,∞) such that

t > 0, Jα0+f
s(t) <∞ and Jα0+g

s(t) <∞. If 0 < m ≤ f(τ)
g(τ) ≤M, τ ∈ [0, t], then[

Jα0+f
s(t)
] 1

s

+
[
Jα0+g

s(t)
] 1

s ≤ 1 +M(m+ 2)

(m+ 1)(M + 1)

[
Jα0+(f + g)s(t)

] 1
s

.

Theorem 2.5. Let α > 0, f and g be two nonnegative functions on [0,∞). Let
two functions ϕi : (0,∞) → (0,∞), i = 1, 2 be increasing such that ϕ1 is M1-
supermultiplicative and ϕ2 is M2-submultiplicative and SαPϕi(f)(t) and SαPϕi(g)(t)
are finite. If there exist C1, C2 ∈ (0,∞) such that

(f + g) (t) ≥ max{C1f(t), C2g(t)},

then

ϕ2

[
SαPϕ1(f)(t)

]
ϕ2

[
SαPϕ1(g)(t)

]
6M2ϕ2(

1

M1ϕ1(C1)
)ϕ2(

1

M1ϕ1(C2)
)
(
ϕ2

[
SαPϕ1(f + g)(t)

])2
.
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Proof. Multiplying (2.10) and (2.11), we have

ϕ2

[
SαPϕ1(f)(t)

]
ϕ2

[
SαPϕ1(g)(t)

]
6M2ϕ2(

1

M1ϕ1(C1)
)ϕ2(

1

M1ϕ1(C2)
)
(
ϕ2

[
SαPϕ1(f + g)(t)

])2
.

Then

ϕ2

[
SαPϕ1(f)(t)

]
ϕ2

[
SαPϕ1(g)(t)

]
M2ϕ2( 1

M1ϕ1(C1) )ϕ2( 1
M1ϕ1(C2) )

≤
(
ϕ2

[
SαPϕ1(f + g)(t)

])2

. �

If P = P1 = 〈a, t, b, 1, 0〉, ϕ1(x) = xp, ϕ2(x) = x
1
p , p ≥ 1,M1 = M2 = 1, C1 =

M+1
M and C2 =m+1 in Theorem 2.5, then following result holds by using Minkowski

inequality.
Corollary 2.6.([4]) Suppose that α > 0, s ≥ 1 and f, g are two positive functions

on (0,∞) such that t > 0, Jαfs(t) < ∞ and Jαgs(t) < ∞. If 0 < m ≤ f(τ)
g(τ) ≤ M ,

τ ∈ [0, t], then[
Jαfs(t)

] 2
s

+ Jαgs(t)
] 2

s ≥ (
(M + 1)(m+ 1)

M
− 2)

[
Jαfs(t)

] 1
s
[
Jαgs(t)

] 1
s

.

3. Conclusions

In this paper, we have proven a Minkowski type inequality for the generalized
variational integral. We have also observed that the results obtained in this paper
are generalizations of some earlier results. An interesting problem would be to
study the methods in this paper to establish the Hermite-Hadamard inequalities for
convex functions via the generalized variational integral.
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