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Abstract. Niebrzydowski and Przytycki conjectured that the torsion of rack and quandle

homology of a dihedral quandle of order 2k is annihilated by k, unless k = 2t for t > 1.

We partially prove this conjecture.

1. Introduction

Rack [7] and quandle [4] homology are (co)homology theories for self-distributive
structures with axioms obtained diagrammatically from Reidemeister moves in clas-
sical knot theory. Various homological and homotopical knot invariants have been
developed based on these (co)homology theories. More precisely, quandle cocycle
invariants [4] are constructed with cocycles of quandle homology and quandle homo-
topy invariants [13, 17] are obtained using homotopy classes of maps from spheres to
the geometric realizations of quandle homology. It is significant to calculate quan-
dle (co)homology and determine explicit quandle cocycles for the study of these
invariants.

The free parts of rack and quandle homology groups of finite quandles have
been completely computed in [6, 9], but little is known about the torsion parts.
The orders of torsion elements of rack and quandle homology were approximated
in [9], and their relationship with the inner automorphism group of the quandle
was discussed in [6]. Niebrzydowski and Przytycki [11, 12] have developed methods
and conjectures about the higher dimensional homology of dihedral quandles. They
conjectured that for a dihedral quandle Rp of order odd prime p, TorHQ

n (Rp) =
Zfnp , where {fn} is a “delayed” Fibonacci sequence, i.e., fn = fn−1 + fn−3 and
f1 = f2 = 0, f3 = 1. It was proved independently by Clauwens [5] and Nosaka [14].
In analogy to the result of group homology, it was conjectured [12] that for a finite
quasigroup quandle, the torsion subgroups of its rack and quandle homology are
annihilated by the order of the quandle. This was proved in [15] and generalized
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[16, 19] for some connected quandles.
In this paper, we study the torsion subgroups of rack and quandle homology of

non-connected quandles. To start with, we partially solve the following conjecture:

Conjecture 1.1.([12]) The number k annihilates TorHW
n (R2k), unless k = 2t, t > 1

and the number 2k is the smallest number annihilating TorHW
n (R2k) for k = 2t, t >

1, where W = R,Q.

1.1. Preliminaries

Definition 1.2.([8, 10]) A quandle (X, ∗) is an algebraic structure with a set X
and a binary operation ∗ : X ×X → X satisfying the following axioms:

(1) (Right self-distributivity) (a ∗ b) ∗ c = (a ∗ c) ∗ (b ∗ c) for any a, b, c ∈ X;

(2) (Invertibility) For each b ∈ X, the right translation rb : X → X given by
rb(x) = x ∗ b is invertible;

(3) (Idempotency) a ∗ a = a for any a ∈ X.

If the binary operation satisfies right self-distributivity and invertibility, then
(X, ∗) is call a rack. Note that the three axioms above are motivated by Reidemeister
moves in knot theory, and racks and quandles can be used to construct (framed)
knot invariants.

Example 1.3. Basic quandles can be obtained from groups and modules as follows:

(1) An abelian group A equipped with the binary operation ∗ : A × A → A
defined by g ∗ h = 2h− g is called a Takasaki quandle or kei. Specially, when
A = Zn, it is called a dihedral quandle and denoted by Rn. See Table 1 for
example.

(2) A group G with the operation g ∗ h = hg−1h is called a core quandle.

(3) A group G with the conjugate operation g ∗ h = h−1gh is called a conjugate
quandle.

(4) Let M be a module over the Laurent polynomial ring Z[T, T−1]. A quandle
M with the operation a ∗ b = Ta+ (1− T )b is called an Alexander quandle.

A trivial quandle, a set X with the binary operation a∗b = a (i.e., the operation
does not depend on the choice of b), is the most elementary quandle. However, it
plays an important role in the proof of Theorem 2.2 because its rack and quandle
homology groups do not contain torsion subgroups.

A quandle homomorphism is a map h : X → Y between two quandles (X, ∗)
and (Y, ∗′) such that h(a ∗ b) = h(a) ∗′ h(b) for all a, b ∈ X. A bijective quandle
homomorphism is called a quandle isomorphism, and a quandle isomorphism from
a quandle X onto itself is called a quandle automorphism. Let X be a quandle.
The quandle automorphism group Aut(X) of X is the group consisting of quandle
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Table 1: Dihedral quandle of order 6

∗ 0 2 4 3 5 1

0 0 4 2 0 4 2
2 4 2 0 4 2 0
4 2 0 4 2 0 4
3 3 1 5 3 1 5
5 1 5 3 1 5 3
1 5 3 1 5 3 1

automorphisms of X. Note that every right translation of a quandle is a quandle
automorphism. The subgroup of Aut(X) generated by all the right translations of
X is called the quandle inner automorphism group, denoted by Inn(X).

A quandle X is said to be quasigroup or Latin if every left translation, lb : X →
X defined by lb(x) = b ∗ x is invertible. A quandle X is connected if the canonical
action of Inn(X) on X is transitive. Otherwise, X is said to be non-connected.
Note that every quasigroup quandle is connected, but the converse does not hold
in general.

Example 1.4.

(1) The dihedral quandle Rn of order n is quasigroup (i.e., connected) if n is odd.
Otherwise, it is non-connected.

(2) The set of all 4-cycles in the symmetric group S4 with the conjugate operation
is a connected quandle, but it is not quasigroup.

(3) An Alexander quandle is quasigroup if and only if 1− T is invertible.

We next review the rack and quandle homology theories.

Definition 1.5.([4, 7])

(1) For a given rack X, let CRn (X) be the free abelian group generated by n-tuples
x = (x1, . . . , xn) of elements of X. We define the boundary homomorphism
∂n : CRn (X)→ CRn−1(X) by for n ≥ 2,

∂n(x) =

n∑
i=2

(−1)i{(x1, . . . , xi−1, xi+1, . . . , xn)−(x1∗xi, . . . , xi−1∗xi, xi+1, . . . , xn)}

and for n < 2, ∂n = 0. (CRn (X), ∂n) is called the rack chain complex of X.

(2) For a quandle X, define the subgroup CDn (X) of CRn (X) for n ≥ 2 generated
by n-tuples (x1, . . . , xn) with xi = xi+1 for some i. We let CDn (X) = 0 if
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n < 2. Then (CDn (X), ∂n) forms a sub-chain complex of (CRn (X), ∂n), called
the degenerate chain complex of X.
The quotient chain complex (CQn (X) = CRn (X)/CDn (X), ∂

′

n), where ∂
′

n is the
induced homomorphism, is called the quandle chain complex of X. Hereafter,
we denote all boundary maps by ∂n.

(3) Let A be an abelian group. Define the chain and cochain complexes

CW∗ (X;A) = CW∗ (X)⊗A, ∂ = ∂ ⊗ Id,

C∗W (X;A) = Hom(CW∗ (X), A), δ = Hom(∂, Id)

for W=R, D, and Q. The yielded homology groups

HW
n (X;A) = Hn(CW∗ (X;A)) and Hn

W (X;A) = Hn(C∗W (X;A))

for W=R, D, and Q are called the nth rack, degenerate, and quandle homology
groups and the nth rack, degenerate, and quandle cohomology groups of a
rack/quandle X with coefficient group A.

The free parts of the rack and quandle homology groups of a finite quandle X,
denoted by FreeHR

n (X) and FreeHQ
n (X), respectively, were completely computed

[6, 9]. In particular, for the dihedral quandle Rm of order m we have:

FreeHR
n (Rm) =

{
Z, if m is odd;
Z2n , if m is even,

FreeHQ
n (Rm) =

 Z, if m is odd and n = 1;
0, if m is odd and n > 1;
Z2, if m is even.

However, it is a bit difficult to compute the torsion parts because there are fewer
methods to calculate them than the group homology theory. As for the torsion parts
of the rack and quandle homology of dihedral quandles, if m is odd prime, then

TorHQ
n (Rm) = Zfnm ,

where fn = fn−1 + fn−3 and f1 = f2 = 0, f3 = 1 [5, 14]. Moreover,

|Rm|TorHR
n (Rm) = 0 and |Rm|TorHQ

n (Rm) = 0

if m is odd [14, 15]. However, little is known when m is even.

2. Annihilation Theorems for Quandle Extensions

Quandle cocycles can be used to construct extensions of quandles in a similar
way to obtain extensions of groups using group cocycles. An abelian extension
theory for quandles was introduced by Carter, Elhamdadi, Nikiforou, and Saito
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[2], and a generalization to extensions with a dynamical cocycle was defined by
Andruskiewitsch and Graña [1].

Definition 2.1.([1, 3]) Let X be a quandle and S be a non-empty set. Let α :
X × X → Fun(S × S, S) = SS×S be a function, so that for a, b ∈ X and s, t ∈ S
we have αa,b(s, t) ∈ S. Then S × X is a quandle by the operation (s, a) ∗ (t, b) =
(αa,b(s, t), a ∗ b), where a ∗ b denotes the quandle operation in X, if and only if α
satisfies the following conditions:

(1) αa,a(s, s) = s for all a ∈ X and s ∈ S,

(2) αa,b(−, t) : S → S is a bijection for each a, b ∈ X and for each t ∈ S,

(3) αa∗b,c(αa,b(s, t), u) = αa∗c,b∗c(αa,c(s, u), αb,c(t, u)) for all a, b, c ∈ X and
s, t, u ∈ S.

Such a function α is called a dynamical quandle cocycle. The quandle constructed
above is denoted by S×αX, and is called the extension of X by a dynamical cocycle
α.

We first discuss annihilation of rack and quandle homology groups of quandle
extensions using certain dynamic cocycles.

Theorem 2.2. Suppose that X is a finite quasigroup quandle and S is a non-empty
set. Let α be the dynamical cocycle defined by αa,b(−, t) = IdS for all a, b ∈ X and
for all t ∈ S. Then the torsion subgroups of HR

n (S ×α X) and HQ
n (S ×α X) are

annihilated by |X|.
Proof. Denote an element (s, x) of S×αX by xs. Let x = (xs11 , · · · , xsnn ) ∈ CRn (S×α
X). We define two chain maps f jr , f

j
s : CRn (S ×α X)→ CRn (S ×α X) by

f jr (x) = |X|(xs1j , . . . , x
sj
j , x

sj+1

j+1 , . . . , x
sn
n ) for 1 ≤ j ≤ n,

f js (x) =
∑
y∈X

(ys1 , . . . , ysj , x
sj+1

j+1 , . . . , x
sn
n ) for 1 ≤ j ≤ n.

Using the following chain homotopies Dj
n and F jn, we show that Dj

n : f jr ' f js for
each 1 ≤ j ≤ n and F jn : f j−1s ' f jr for each 2 ≤ j ≤ n:

Dj
n(x) =

∑
y∈X

(xs1j , . . . , x
sj
j , y

sj , x
sj+1

j+1 , . . . , x
sn
n ) for 1 ≤ j ≤ n,

F jn(x) =
∑
y∈X

(xs1j , . . . , x
sj−1

j , ysj , x
sj
j , x

sj+1

j+1 , . . . , x
sn
n ) for 2 ≤ j ≤ n.

Note that (s, a) ∗ (t, b) = (s, a ∗ b), i.e., as ∗ bt = (a ∗ b)s since αa,b(−, t) = IdS for
any a, b ∈ X and for any s, t ∈ S.
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Define face maps d
(∗0)
i , d

(∗)
i : CRn (X) → CRn−1(X) of the boundary homomor-

phism ∂n by

d
(∗0)
i (x) = (x1, . . . , xi−1, xi+1, . . . , xn) and

d
(∗)
i (x) = (x1 ∗ xi, . . . , xi−1 ∗ xi, xi+1, . . . , xn),

i.e., ∂n =
n∑
i=2

(−1)i(d
(∗0)
i − d(∗)i ).

Let us first consider the chain homotopy Dj
n : CRn (S ×α X)→ CRn+1(S ×α X).

(1) Assume that i ≤ j. The idempotent condition of a quandle implies that

d
(∗)
i Dj

n(x) =
∑
y∈X

(xs1j , . . . , x
si−1

j , x
si+1

j , . . . , x
sj
j , y

sj , x
sj+1

j+1 , . . . , x
sn
n ).

Note that the formula above does not depend on ∗, in particular (d
(∗0)
i −d(∗)i )Dj

n = 0.
Moreover,

Dj
n−1d

(∗)
i (x) =

∑
y∈X

(xs1j+1, . . . , x
si−1

j+1 , x
si+1

j+1 , . . . , x
sj+1

j+1 , y
sj+1 , x

sj+2

j+2 , . . . , x
sn
n )

which is the same as Dj
n−1d

(∗0)
i (x), hence Dj

n−1(d
(∗0)
i − d(∗)i ) = 0.

(2) When j + 2 ≤ i ≤ n+ 1,
∑
y∈X

(ysj ∗ xsi−1

i−1 ) =
∑
y∈X

(y ∗ xi−1)sj =
∑
y∈X

(ysj ) by the

invertibility condition of a quandle, and therefore

d
(∗)
i Dj

n(x) =
∑
y∈X

((xj ∗ xi−1)s1 , . . . , (xj ∗ xi−1)sj , ysj ,

(xj+1 ∗ xi−1)sj+1 , . . . , (xi−2 ∗ xi−1)si−2 , xsii , · · · , x
sn
n ).

On the other hand, if j + 1 ≤ i, then we have

Dj
n−1d

(∗)
i (x) =

∑
y∈X

((xj ∗ xi)s1 , . . . , (xj ∗ xi)sj , ysj ,

(xj+1 ∗ xi)sj+1 , . . . , (xi−1 ∗ xi)si−1 , x
si+1

i+1 , · · · , x
sn
n ),

i.e., d
(∗0)
i+1D

j
n = Dj

n−1d
(∗0)
i and d

(∗)
i+1D

j
n = Dj

n−1d
(∗)
i for j + 1 ≤ i ≤ n.

(3) Suppose that i = j + 1. Then we have

d
(∗0)
i Dj

n(x) = |X|(xs1j , . . . , x
sj
j , x

sj+1

j+1 , . . . , x
sn
n ) = f jr (x).

Note that
∑
y∈X

(xskj ∗ ysj ) =
∑
y∈X

(xj ∗ y)sk =
∑
y∈X

(ysk) as X is a quasigroup quandle.

Therefore, we obtain the following equality:

d
(∗)
i Dj

n(x) =
∑
y∈X

(ys1 , . . . , ysj , x
sj+1

j+1 , . . . , x
sn
n ) = f js (x).
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By (1), (2), and (3),

∂n+1D
j
n(x) +Dj

n−1∂n(x) = (−1)j+1(f jr (x)− f js (x)),

hence, Dj
n : f jr ' f js for each 1 ≤ j ≤ n.

We next consider the chain homotopy F jn : CRn (S ×α X)→ CRn+1(S ×α X).

(4) If i ≤ j − 1, then

d
(∗)
i F jn(x) =

∑
y∈X

(xs1j , . . . , x
si−1

j , x
si+1

j , . . . , x
sj−1

j , ysj , x
sj
j , x

sj+1

j+1 , . . . , x
sn
n ),

so this formula does not depend on ∗, in particular (d
(∗0)
i − d(∗)i )F jn = 0.

Moreover, if i ≤ j, then

F jn−1d
(∗)
i (x) =

∑
y∈X

(xs1j+1, . . . , x
si−1

j+1 , x
si+1

j+1 , . . . , x
sj
j+1, y

sj+1 , x
sj+1

j+1 , x
sj+2

j+2 , . . . , x
sn
n )

which is the same as F jn−1d
(∗0)
i (x), hence F jn−1(d

(∗0)
i − d(∗)i ) = 0.

(5) Note that
∑
y∈X

(ysj ∗ xsi−1

i−1 ) =
∑
y∈X

(y ∗ xi−1)sj =
∑
y∈X

(ysj ) by the invertibility

condition of a quandle.

If i = j + 1, then (d
(∗0)
i − d(∗)i )F jn = 0. Assume that j + 2 ≤ i ≤ n+ 1.

Then

d
(∗)
i F jn(x) =

∑
y∈X

((xj ∗ xi−1)s1 , . . . , (xj ∗ xi−1)sj−1 , ysj ,

(xj ∗ xi−1)sj , . . . , (xi−2 ∗ xi−1)si−2 , xsii , · · · , x
sn
n ).

On the other hand, if j + 1 ≤ i, then

F jn−1d
(∗)
i (x) =

∑
y∈X

((xj ∗ xi)s1 , . . . , (xj ∗ xi)sj−1 , ysj ,

(xj ∗ xi)sj , . . . , (xi−1 ∗ xi)si−1 , x
si+1

i+1 , · · · , x
sn
n ).

Thus, d
(∗0)
i+1F

j
n = F jn−1d

(∗0)
i and d

(∗)
i+1F

j
n = F jn−1d

(∗)
i for j + 1 ≤ i ≤ n.

(6) Assume that i = j. Then we have

d
(∗0)
i F jn(x) = |X|(xs1j , . . . , x

sj
j , x

sj+1

j+1 , . . . , x
sn
n ) = f jr (x).

Since X is a quasigroup quandle,
∑
y∈X

(xskj ∗ysj ) =
∑
y∈X

(xj ∗y)sk =
∑
y∈X

(ysk). Hence,

we have
d
(∗)
i F jn(x) =

∑
y∈X

(ys1 , . . . , ysj−1 , x
sj
j , . . . , x

sn
n ) = f j−1s (x).
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By (4), (5), and (6),

∂n+1F
j
n(x) + F jn−1∂n(x) = (−1)j(f jr (x)− f j−1s (x)),

thus, F jn : f j−1s ' f jr for each 2 ≤ j ≤ n.
Finally, we obtain the following sequence of chain homotopic chain maps:

|X|IdCRn (S×αX) = f1r ' f1s ' f2r ' · · · ' fn−1r ' fn−1s ' fnr ' fns .

Let τ(S) denote the trivial quandle with the set S, i.e., s ∗ t = s for any
s, t ∈ τ(S). Consider the chain maps p : CRn (S ×α X) → CRn (τ(S)) and φ :
CRn (τ(S))→ CRn (S ×α X) given by

p(xs11 , · · · , xsnn ) = (s1, · · · , sn) and φ(s1, · · · , sn) =
∑
y∈X

(ys1 , · · · , ysn).

Clearly φ ◦ p = fns , so that we have the same induced homomorphisms

|X|IdHRn (S×αX) = (f1r )∗ = (fns )∗ = φ∗ ◦ p∗,

where p∗ : HR
n (S ×α X)→ HR

n (τ(S)) and φ∗ : HR
n (τ(S))→ HR

n (S ×α X).
Since τ(S) is a trivial quandle, HR

n (τ(S)) has no torsion. Therefore,

|X|z = |X|IdHRn (S×αX)(z) = φ∗(p∗(z)) = φ∗(0) = 0

for every z ∈ Tor(HR
n (S ×α X)) as desired.

Furthermore, since the rack homology of a quandle splits into the quandle ho-
mology and the degenerate homology [9], i.e., HR

n (S ×α X) = HQ
n (S ×α X) ⊕

HD
n (S ×α X), the torsion of HQ

n (S ×α X) is also annihilated by |X|. 2

Using Theorem 2.2, we partially prove Conjecture 1.1.

Corollary 2.3. Let R2k be the dihedral quandle of order 2k. The number k anni-
hilates both TorHR

n (R2k) and TorHQ
n (R2k), if k is odd.

Proof. If k = 1, we are done because R2 is a trivial quandle and therefore HR
n (R2)

and HQ
n (R2) have no torsion by definition.

Suppose that k > 1. Let S = {e, o} be the set with two elements. We define the
dynamical cocycle α : Rk × Rk → SS×S by α[a],[b](−, t) = IdS for all [a], [b] ∈ Rk
and for all t ∈ S. Note that if k is odd, then S ×α Rk ∼= R2k via the quandle
isomorphism h : S×αRk → R2k defined by h(e, [m]) = [2m] and h(o, [m]) = [2m+k]
for each [m] ∈ Rk. Furthermore, since k is odd, the dihedral quandle Rk is a
quasigroup quandle. Therefore, Theorem 2.2 implies that the torsion subgroups of
HR
n (R2k) = HR

n (S ×α Rk) and HQ
n (R2k) = HQ

n (S ×α Rk) are annihilated by k. 2

Table 2 contains some computational results on homology groups of dihedral
quandles of small even order.
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Table 2: Homology of dihedral quandles of order 2k when k is odd

n 1 2 3

HR
n (R2) Z2 Z4 Z8

HQ
n (R2) Z2 Z2 Z2

HD
n (R2) 0 Z2 Z6

HR
n (R6) Z2 Z4 Z8 ⊕ Z2

3

HQ
n (R6) Z2 Z2 Z2 ⊕ Z2

3

HD
n (R6) 0 Z2 Z6

HR
n (R10) Z2 Z4 Z8 ⊕ Z2

5

HQ
n (R10) Z2 Z2 Z2 ⊕ Z2

5

HD
n (R10) 0 Z2 Z6

Remark 2.4. Corollary 2.3 does not hold when we replace the condition “k is odd”
with “k is even” in the corollary. For example, HQ

3 (R8) = Z2 ⊕ Z2
2 ⊕ Z2

8.

3. Future Research

Corollary 2.3 can be used to compute rack and quandle homology groups of
dihedral quandles of even order. In 2016, Takefumi Nosaka suggested the following
open problem during the Knots in Hellas conference:

Problem 3.1. HQ
3 (R2p) = Z⊕ Z⊕ Zp ⊕ Zp if p is odd prime.

An open problem of whether |Inn(X)| of a finite quandle X annihilates
TorHR

n (X) and TorHQ
n (X) for every dimension n was suggested in [16]. It is known

that Inn(Rm) is isomorphic to the dihedral group of order 2m if m is odd and the
dihedral group of order m if m is even. One can prove the following open problem
by generalizing Corollary 2.3 in case of even k:

Problem 3.2. TorHR
n (Rm) and TorHQ

n (Rm) are annihilated by |Inn(Rm)| for all
n.
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