DOI QR코드

DOI QR Code

On Alexander Polynomials of Pretzel Links

  • Bae, Yongju (Department of Mathematics, Kyungpook National University) ;
  • Lee, In Sook (Department of Mathematics, Kyungpook National University)
  • 투고 : 2020.02.28
  • 심사 : 2020.06.15
  • 발행 : 2020.06.30

초록

In this paper, we will find a Seifert matrix for a class of pretzel links with a certain symmetry. Using the symmetry, we find formulae for the Alexander polynomials, determinants and signatures of the pretzel links.

키워드

참고문헌

  1. Y. Bae and I. S. Lee, On Seifert matrices of symmetric links, Kyungpook Math. J., 51(3)(2011), 261-281. https://doi.org/10.5666/KMJ.2011.51.3.261
  2. Y. Bae and I. S. Lee, On Alexander polynomial of periodic links, J. Knot Theory Ramifications, 20(5)(2011), 749-761. https://doi.org/10.1142/S0218216511008942
  3. Y. Bae and I. S. Lee, Determinants formulae of Matrics with certain symmetry and its applications, Symmetry, 9(12)(2017), Art. No. 303, 22 pp. https://doi.org/10.3390/sym9020022
  4. P. Cromwell, Knots and links, Cambridge university press, 2004.
  5. J. Ge and L. Zhang, Determinants of links, spanning trees, and a theorem of Shank, J. Knot Theory Ramifications, 25(9)(2016), 6 pp.
  6. A. Kawauchi, A survey of knot theory, Birkhauser,Basel, Boston, and Berlin, 1996.
  7. D. Kim and J. Lee, Some invariants of pretzel links, Bull. Austral. Math. Soc., 75(2007), 253-271. https://doi.org/10.1017/S0004972700039198
  8. Y. Nakagawa, On the Alexander polynomials of pretzel links L($p_1$; . . . ;$p_n$), Kobe J. Math., 3(1987), 167-177.
  9. Y. Shinohara, On the signature of pretzel links, Topology and computer science (Atami, 1986), 217-224, Kinokuniya, Tokyo, 1987.