참고문헌
- Lee SH, Yoon YS, Kim HG, Kim JY. Clinical Study on the Distribution of Sasang Constitutions between Parents and their Offsprings. Journal of Physiology & Pathology in Korean Medicine. 2004;18(6):1904-7. (Korean)
- Lee SW, Hur YM, Park HY, Kim JY. A validation study on Sasang constitutions and genetic influences. FACT: Focus on Alternative and Complementary Therapies. 2007;2007(12). DOI: 10.1111/j.2042-7166.2007.tb05894.x. Korean.
- Lee MK, Jang ES, Sohn HY, Park JY, Koh BH, Sung J, et al. Investigation of Genetic Evidence for Sasang Constitution Types in South Korea. Genomics & Informatics. 2009;7(2):107-10. DOI: https://doi.org/10.5808/gi.2009.7.2.107.
- Hur YM, Lee SW, Jin HJ. Genetic and environmental overlaps among sasang constitution types: a multivariate twin study. Twin Research and Human Genetics. 2018; 21(6):518-26. DOI: 10.1017/thg.2018.56.
- Kim BY, Jin HJ, Kim JY. Genome-wide association analysis of Sasang constitution in the Korean population. The Journal of Alternative and Complementary Medicine. 2012;18(3):262-9. https://doi.org/10.1089/acm.2010.0764
- Cha SW, Yu HJ, Park AY, Oh SA, Kim JY. The obesity-risk variant of FTO is inversely related with the So-Eum constitutional type: genome-wide association and replication analyses. BMC complementary and alternative medicine. 2015;15(1):120. DOI: 10.1089/acm.2010.0764.
- Kim SH, Ko BH, Song IB. A study on the standardization of QSCC II (Questionnaire for the Sasang Constitution Classification II). The Journal of Korean Medicine. 1996;17(2):337-93. Korean.
- Lee SG, Kwak CK, Lee EJ, Koh BH, Song IB. The Study on the Upgrade of QSCC (II). J of Sasang Const Med. 2003;15(1):39-49. Korean.
- Baek YH, Jang ES, Park KH, Yoo JH, Jin HJ, Lee SW. Development and validation of brief KS-15 (Korea Sasang Constitutional Diagnostic Questionnaire) based on body shape, temperament and symptoms. Journal of Sasang Constitutional Medicine. 2015;27(2): 211-21. Korean. https://doi.org/10.7730/JSCM.2015.27.2.211
- Lee MS, Bae NY, Hwang MW, Chae H. Development and validation of the digestive function assessment instrument for traditional Korean medicine: Sasang digestive function inventory. Evidence-Based Complementary and Alternative Medicine. 2013;2013. DOI: 10.1155/2013/263752.
- So JH, Kim JW, Nam JH, Lee BJ, Kim YS, Kim JY, et al. The web application of constitution analysis system-SCAT (Sasang Constitution Analysis Tool). Journal of Sasang Constitutional Medicine. 2016;28(1):1-10. Korean. https://doi.org/10.7730/JSCM.2016.28.1.1
- Jin HJ, Baek YH, Kim HS, Ryu JH, Lee SW. Constitutional multicenter bank linked to Sasang constitutional phenotypic data. BMC complementary and alternative medicine. 2015;15(1):1. DOI: 10.1186/s12906-015-0553-3.
- Hyun MK, Baek YH, Lee SW. Association between digestive symptoms and sleep disturbance: a crosssectional community-based study. BMC gastroenterology. 2019;19(1):34. DOI: 10.1186/s12876-019-0945-9.
- Baek YH, Kim HS, Lee SW, Ryu JH, Kim YY, Jang ES. Study on the ordinary symptoms characteristics of gender difference according to Sasang constitution. 2009;23(1):251-8. Korean.
- Landrum MJ, Lee JM, Benson M, Brown G, Chao C, Chitipiralla S, et al. ClinVar: public archive of interpretations of clinically relevant variants. Nucleic acids research. 2016;44(D1):D862-D8. DOI: 10.1093/nar/gkv1222.
- Welter D, MacArthur J, Morales J, Burdett T, Hall P, Junkins H, et al. The NHGRI GWAS Catalog, a curated resource of SNP-trait associations. Nucleic acids research. 2014;42(D1):D1001-D6.DOI:10.1093/nar/gkt1229.
- Sudmant PH, Rausch T, Gardner EJ, Handsaker RE, Abyzov A, Huddleston J, et al. An integrated map of structural variation in 2,504 human genomes. Nature. 2015;526(7571):75-81.DIO:10.1038/nature15394.
- Consortium GP. A global reference for human genetic variation. Nature. 2015;526(7571):68-74.DOI:10.1038/nature15393.
- Howie B, Fuchsberger C, Stephens M, Marchini J, Abecasis GR. Fast and accurate genotype imputation in genome-wide association studies through prephasing. Nature genetics. 2012;44(8):955-9. DOI:10.1038/ng.2354.
- Howie B, Marchini J, Stephens M. Genotype imputation with thousands of genomes. G3: Genes, Genomes, Genetics. 2011;1(6):457-70. DOI: 10.1534/g3.111.001198.
- Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. The American journal of human genetics. 2007;81(3):559-75. DOI: 10.1086/519795.
- Team RC. R language definition. Vienna, Austria: R foundation for statistical computing. 2000.
- Kuhn M. Caret: classification and regression training. Astrophysics Source Code Library. 2015.
- Breiman L. Random forests. Machine learning. 2001; 45(1):5-32. https://doi.org/10.1023/A:1010933404324
- Karatzoglou A, Smola A, Hornik K, Zeileis A. kernlaban S4 package for kernel methods in R. Journal of statistical software. 2004;11(9):1-20.
- Venables WN, Ripley BD. Modern applied statistics with S-PLUS: Springer Science & Business Media; 2013.
- Kovacevic J, Vetterli M. The commutativity of up/ downsampling in two dimensions. IEEE transactions on information theory. 1991;37(3):695-8. DOI:10.1109/18.79936.
- Yoon HJ, Kim SH, Kim JH, Keum JS, Oh SI, Jo JI, et al. A Lesion-Based Convolutional Neural Network Improves Endoscopic Detection and Depth Prediction of Early Gastric Cancer. Journal of clinical medicine. 2019;8(9):1310. DOI: 10.3390/jcm8091310.
- Daetwyler HD, Villanueva B, Woolliams JA. Accuracy of predicting the genetic risk of disease using a genome-wide approach. PloS one. 2008;3(10). DOI :10.1371/journal.pone.0003395.
- Chatterjee N, Shi J, García-Closas M. Developing and evaluating polygenic risk prediction models for stratified disease prevention. Nature Reviews Genetics. 2016;17(7):392. DOI: 10.1038/nrg.2016.27.
- Janssens ACJ, Ioannidis JP, Bedrosian S, Boffetta P, Dolan SM, Dowling N, et al. Strengthening the reporting of genetic risk prediction studies (GRIPS): explanation and elaboration. European journal of epidemiology. 2011;26(4):313. DOI: 10.1111/j.1365-2362.2011.02493.x.
- Kraft P, Hunter DJ. Genetic risk prediction-are we there yet? New England Journal of Medicine. 2009; 360(17):1701-3.DOI:10.1093/jnci/djq413.
- Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K, et al. The UK Biobank resource with deep phenotyping and genomic data. Nature. 2018; 562(7726):203-9. DOI: 10.1038/s41586-018-0579-z.
- Barbour V. UK Biobank: a project in search of a protocol? The Lancet. 2003;361(3970):1734-8. DOI: 10.1016/S0140-6736(03)13377-6.
- McCarty CA, Chisholm RL, Chute CG, Kullo IJ, Jarvik GP, Larson EB, et al. The eMERGE Network: a consortium of biorepositories linked to electronic medical records data for conducting genomic studies. BMC medical genomics. 2011;4(1):13. DOI: 10.1186/1755-8794-4-13.
- Marquez-Luna C, Gazal S, Loh P-R, Furlotte N, Auton A, Price AL, et al. Modeling functional enrichment improves polygenic prediction accuracy in UK Biobank and 23andMe data sets. bioRxiv. 2018: 375337. DOI: 10.1101/375337.
- Lello L, Raben TG, Yong SY, Tellier LC, Hsu SD. Genomic prediction of 16 complex disease risks including heart attack, diabetes, breast and prostate cancer. Scientific reports. 2019;9(1):1-16. DOI: 10.1038/s41598-019-51258-x.
-
Berliner JL, Brodke DJ, Chan V, SooHoo NF, Bozic KJ. John Charnley Award: preoperative patient-reported outcome measures predict clinically meaningful improvement in function after THA. Clinical Orthopaedics and Related Research
${(R)}$ . 2016;474(2): 321-9. DOI: 10.1007/s11999-015-4350-6. - Keswani A, Tasi MC, Fields A, Lovy AJ, Moucha CS, Bozic KJ. Discharge destination after total joint arthroplasty: an analysis of postdischarge outcomes, placement risk factors, and recent trends. The Journal of arthroplasty. 2016;31(6):1155-62. DOI: 10.1016/j.arth.2015.11.044.
- Jones SE, Tyrrell J, Wood AR, Beaumont RN, Ruth KS, Tuke MA, et al. Genome-wide association analyses in 128,266 individuals identifies new morningness and sleep duration loci. PLoS genetics. 2016;12(8). DOI: 10.1371/journal.pgen.1006125.