DOI QR코드

DOI QR Code

2018년 8월 6일 발생한 영동지역 집중호우 사례에 대한 특성 연구

Characteristics of a Heavy Rainfall Event in Yeongdong Region on 6 August, 2018

  • 안보영 (국립기상과학원 재해기상연구부) ;
  • 심재관 (국립기상과학원 재해기상연구부) ;
  • 김규랑 (국립기상과학원 재해기상연구부) ;
  • 김승범 (국립기상과학원 재해기상연구부)
  • Ahn, Bo-Young (High Impact Weather Research Department, National Institute of Meteorological Sciences) ;
  • Shim, Jae-Kwan (High Impact Weather Research Department, National Institute of Meteorological Sciences) ;
  • Kim, KyuRang (High Impact Weather Research Department, National Institute of Meteorological Sciences) ;
  • Kim, Seung-Bum (High Impact Weather Research Department, National Institute of Meteorological Sciences)
  • 투고 : 2020.05.06
  • 심사 : 2020.06.11
  • 발행 : 2020.06.30

초록

2018년 8월 6일 영동지역에서 강한 대류 세포에 의해 천둥과 번개를 동반한 집중호우(강릉: 93 mm hr-1)가 발생했다. 집중호우 사례의 특성을 조사하기 위하여 COMS 위성의 구름 산출물 자료, 상하층 종관 일기도, ECMWF 재분석 자료, 라디오존데 자료를 이용하였다. 분석결과, 상층의 차고 건조한 공기가 동해상(영동지역)으로 유입되면서 상대적으로 중·하층에 따뜻하고 습한 공기와 만나 대기의 불안정을 만들고 대류운이 급격하게 발달하면서 단시간에 많은 강수가 내렸다. COMS 위성의 구름 운정 온도가 약 -65℃ 이상, 구름 광학 두께는 약 20-25 이상의 높은 값을 보일 때 강수량은 10 mm hr-1 이상으로 나타났다. 따라서 강수량은 구름 내의 수분 양 그리고 구름의 키와 밀접한 관련성을 가지는 것을 확인할 수 있었다. 라디오존데 자료의 연직 분석에서는 상하층 간의 연직 바람 쉬어가 크게 나타났다. 약 700 hPa 고도에서는 역전층이 나타나면서 상층과 하층간의 상당온위의 차이를 유발하여 대기불안정을 더욱 강화시켰으며 구름층은 고도 약 13 km 이상으로 발달하는 것을 확인할 수 있었다. 이러한 결과는 ECMWF 재분석 자료의 연직 분석에서도 확인할 수 있었다.

A heavy (93 mm hr-1) rainfall event accompanied by lightning occurred over Gangneung in the Yeongdong region of South Korea on August 6, 2018. This study investigated the underlying mechanism for the heavy rainfall event by using COMS satellite cloud products, surface- and upper-level weather charts, ECMWF reanalysis data, and radiosonde data. The COMS satellite cloud products showed rainfall exceeding 10 mm hr-1, with the lowest cloud-top temperature of approximately -65℃ and high cloud optical thickness of approximately 20-25. The radiosonde data showed the existence of strong vertical wind shear between the upper and lower cloud layers. Furthermore, a strong inversion in the equivalent potential temperature was observed at a pressure altitude of 700 hPa. In addition, there was a highly developed cloud layer at a height of 13 km, corresponding with the vertical analysis of the ECMWF data. This demonstrated the increased atmospheric instability induced by the vertical differences in equivalent potential temperature in the Yeongdong region. Consequently, cold, dry air was trapped within relatively warm, humid air in the upper atmosphere over the East Sea and adjacent Yeongdong region. This caused unstable atmospheric conditions that led to rapidly developing convective clouds and heavy rainfall over Gangneung.

키워드

참고문헌

  1. Adler, R.F., and D. D. Fenn, 1981, Satellite-observed cloud-top height changes in tornadic thunderstorms. Journal of Applied Meteorology and Climatology, 20, 1369-1375. https://doi.org/10.1175/1520-0450(1981)020<1369:SOCTHC>2.0.CO;2
  2. Ahn, B.Y., Kwon, T.Y., Cho, K.H., Lee, J.S., and Lee, K.T., 2007, Analysis of cloud properties related to Yeongdong heavy snow using the MODIS cloud product. Korean Journal of Remote Sensing, 23(2), 71-87. (in Korean)
  3. Ahn, B.Y., Lee, J.S., Kim, B.J., and Kim, H.W., 2019, A study on the synoptic structural characteristics of heavy snowfall event in Yeongdong area that occurred on 20 January, 2017. Journal of Environmental Science International, 28(9), 765-784. (in Korean) https://doi.org/10.5322/jesi.2019.28.9.765
  4. Baum, B.A., Menzel, W.P., Frey, R.A., Tobin, D., Holz, R.E., Ackerman, S.A., Heidinger, A.K., and Yang, P., 2012, MODIS cloud top property refinements for collection 6. Journal of Applied Meteorology and Climatology, 51, 1145-1163. https://doi.org/10.1175/JAMC-D-11-0203.1
  5. Burpee. R.W., 1979, Peninsula-Scale convergence in th South Florida sea breeze. Monthly Weather Review, 107, 852-860. https://doi.org/10.1175/1520-0493(1979)107<0852:PSCITS>2.0.CO;2
  6. Byers, H.R., and Rodebush. H.R., 1948, Causes of thunderstorms of the Florida Peninsula. Journal of Meteorology, 5, 275-280. https://doi.org/10.1175/1520-0469(1948)005<0275:COTOTF>2.0.CO;2
  7. Charney, J.G., and Eliassen, A., 1964, On the growth of the hurricane depression. Journal of Atmospheric Sciences, 21, 68-75. https://doi.org/10.1175/1520-0469(1964)021<0068:OTGOTH>2.0.CO;2
  8. Cho, K.H., Cho, Y.J., Kwon, T.Y., 2004, Characteristics of Air Mass Related with Precipitation Events in Yeongdong Region, Journal of Korean Meteorological Society, 40, 381-393. (in Korean)
  9. Choi, J.W., and Lee, J.G., 2015, A sensitivity study of WRF model simulations to nudging methods for a Yeongdong heavy snowfall event, Atmosphere, 25(1), 99-115. (in Korean) https://doi.org/10.14191/Atmos.2015.25.1.099
  10. Choi, S.B., and Lee, J.G., 2016, A numerical simulation study of a heavy rainfall event over Daegwallyeong on 31 July 2014. Atmosphere, 26(1), 159-183. (in Korean) https://doi.org/10.14191/Atmos.2016.26.1.159
  11. Chung, K.B., Kim, J.Y., and Kwon, T.Y., 2004, Characteristics of lower-tropospheric wind related with winter precipitation in Yeongdong region, Journal of Korean Meteorological Society, 40, 369-380. (in Korean)
  12. ECMWF (European Centre for Medium-Range Weather Forecasts), IFS documentation. ECMWF, Reading, United Kingdom. https://www.ecmwf.int/en/newsletter/159/meteorology/global-reanalysis-goodbye-era-interimhello-era5(last access: 9 March 2019).
  13. Hong, S.Y, 1992, Numerical simulation of a heavy rainfall event occurred over Korea, Ph. D. dissertation, Seoul National University, Seoul, Korea. 246 p.
  14. Heo, B.H., Kim, K.E., and Min, K.D., 1994, Synoptic thermodynamic characteristics of air mass thunderstroms occurring in the middle region of South korea during the summer. Journal of Korean Meteorological Society, 30, 49-63. (in Korean)
  15. Jeon, B.I., Kim, Y.K., and Lee, H.W., 1994, The influences of sea breeze on air pollution concentration in Pusan, Korea. Journal of the Korean Environmental Sciences Society, 3, 357-365. (in Korean)
  16. Jhun, J.G., Lee, D.K., and Lee, H.A., 1994, A study on the heavy snowfalls occurred in South Korea. Journal of Korean Meteorological Society, 30(1), 97-117. (in Korean)
  17. Kim, J.Y., Min, K.H., Kim, K.E., and Lee, K.W., 2013, A case study of mesoscale snowfall development associated with tropopause folding. Journal of Korean Meteorological Society, 23, 331-346. (in Korean)
  18. Kim, K.E., and Lee, H.R., 1994, Development mechanism of summertime air mass thunderstroms occurred in Kwangju area. Journal of Korean Meteorological Society, 30, 597-613. (in Korean)
  19. Kim, Y.H., and Baik, J.J., 2007, Structure and evolution of a numerically simulated thunderstorm outflow. Journal of Korean Earth Science Society, 28, 857-870. (in Korean) https://doi.org/10.5467/JKESS.2007.28.7.857
  20. Kim, Y.J., and Lee, J.G., 2014, WRF numerical study on the convergent cloud band and its neighbouring convective clouds. Atmosphere, 24(1), 49-68. (in Korean) https://doi.org/10.14191/Atmos.2014.24.1.049
  21. Kwon, T.Y., Cho, Y.J., Seo, D.H., Choi, M.G., and Han, S.O., 2014, Synoptic environment associated with extreme heavy snowfall events in the Yeongdong region. Atmosphere, 24(3), 343-364. (in Korean) https://doi.org/10.14191/Atmos.2014.24.3.343
  22. Lee, J.G., 2001, A numerical simulation of a heavy snowfall event occurred along the Youngdong coastal area. Journal of Korean Meteorological Society, 37(1), 1-12. (in Korean)
  23. Nakajima, T., King, M.D., 1990, Determination of the optical thickness and effective particle radius of clouds from reflected solar radiation measurements. Part I:Theory, Journal of Atmospheric Sciences, 47, 1878-1893. https://doi.org/10.1175/1520-0469(1990)047<1878:DOTOTA>2.0.CO;2
  24. Maddox, R.A., 1980, Mesoscale convective complexes. Bulletin American Meteologicla Society, 61, 1374-1387. https://doi.org/10.1175/1520-0477(1980)061<1374:MCC>2.0.CO;2
  25. Ministry of the Interior and Safety, 2017, 2017 Disaster yearbook. 56 p. (in Korean)
  26. National Meteorological Satellite Center, 2012, COMS MI Cloud optical thickness algorithm theoretical basis document. 1-43. (in Korean)
  27. National Meteorological Satellite Center, 2012, COMS MI Cloud top temperature and Pressure algorithm theoretical basis document. 1-41. (in Korean)
  28. Oh, I.B., Kim, Y.K., and Hwang, M.K., 2004: Effects of late sea-breeze on ozone distributions in the coastal Urban area. Journal of Korean Society for Atmospheric Environment, 20, 345-360. (in Korean)
  29. Park, J.H., Kim, K.E., and Heo, B.H., 2009, Comparison of development mechanisms of two heavys snowfall events occurred in Yeongnam and Yeongdong regions of the Korean Peninsula, Atmosphere, 19, 9-36. (in Korean)
  30. Ryu, C.S., Shin, Y.M., and Lee, S.H., 2004, Numerical sutdies for the effects of complicate coastal area on variation of mesoscale circulation. Journal of Korean Meteorological Society, 40, 71-86. (in Korean)
  31. Wakimoto, R.M., 1982, The life cycle of thunderstorm gust fronts as viewed with doppler radar and rawinsonde data. Monthly Weather Review, 110, 1160-1082. https://doi.org/10.1175/1520-0493(1982)110<1060:TLCOTG>2.0.CO;2
  32. Warren, R.A., Kirshbaum, D.J., Plant, R.S., and Lean, H.W., 2014, A 'Boscastle-type' quasi-stationary convective system over the UK Southwest Peninsula. Quarterly Journal of the Royal Meteorological Society, 140, 240-257. https://doi.org/10.1002/qj.2124
  33. Weisman, M.L., and Klemp, J. B., 1982, The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Monthly Weather Review, 110, 504-520. https://doi.org/10.1175/1520-0493(1982)110<0504:TDONSC>2.0.CO;2
  34. Yoon, J.H., and Min, K.H., 2016, Characteristic Analysis of Multicell Convective System that Occurred on 6 August 2013 over the Korean Peninsula. Journal of Korean Meteorological Society, 26, 2, 321-336. (in Korean)