DOI QR코드

DOI QR Code

Inhibitory Effect of Cheese Whey on Cucumber Mosaic Virus and Pepper Mottle Virus in Capsicum annuum

치즈 유청의 오이모자이크바이러스와 고추모틀바이러스 감염 억제 효과

  • Chung, Bong Nam (National Institute of Horticultural and Herbal Science, Rural Development Administration) ;
  • Kwon, Sun Jung (Institute of Green Bio Science and Technology, Seoul National University in Pyeongchang) ;
  • Choi, Gug Seoun (National Institute of Horticultural and Herbal Science, Rural Development Administration) ;
  • Yoon, Ju Yeon (National Institute of Horticultural and Herbal Science, Rural Development Administration) ;
  • Cho, In Sook (National Institute of Horticultural and Herbal Science, Rural Development Administration)
  • 정봉남 (농촌진흥청 국립원예특작과학원 원예특작환경과) ;
  • 권선정 (서울대학교 그린바이오과학기술연구원) ;
  • 최국선 (농촌진흥청 국립원예특작과학원 원예특작환경과) ;
  • 윤주연 (농촌진흥청 국립원예특작과학원 원예특작환경과) ;
  • 조인숙 (농촌진흥청 국립원예특작과학원 원예특작환경과)
  • Received : 2020.04.25
  • Accepted : 2020.06.23
  • Published : 2020.06.30

Abstract

Evaluations were made for the effects of cheese whey treatment on infection of pepper plants by cucumber mosaic virus-Vch (CMV-Vch) and pepper mottle virus-Kr (PepMoV-Kr). In a greenhouse, pepper plants sprayed with whey, prior to inoculation by CMV-Vch using aphids, showed a viral infection rate significantly lower (6.6%) than for the control (23.3%). In an open field experiment, in which CMV infection relied on natural transmission by aphids, pepper plants were sprayed with undiluted whey once a week, starting on the transplanting date (May 2) to the end of June. On June 5, these whey-sprayed plants showed a CMV infection rate reduced by 18.9% and 16.7%, compared to untreated and pesticide-treated plants, respectively. In the greenhouse, pepper plants inoculated with PepMoV-Kr mixed with whey showed a viral infection rate decreased by 60% compared to the control. The accumulated amount of PepMoV-Kr coat protein was less than that for the virus-only control at 6 days post inoculation (dpi), but increased up to a similar level as the control at 9 dpi. This study showed that cheese whey is effective in reducing infection of both CMV and PepMoV in pepper plants.

치즈 제조공정에서 나오는 부산물인 유청이 진딧물에 의해 전염되는 오이모자이크바이러스(cucumber mosaic virus, CMV)와 고추모틀바이러스(pepper mottle virus, PepMoV)의 감염 억제효과가 있는지를 고추 '청양' 품종을 대상으로 조사하였다. 온실에서 유청 원액 및 원액을 물로 2-20배로 희석하여 고추 '청양' 품종에 분무한 후 복숭아혹진딧물을 이용하여 CMV-Vch를 접종한 결과, 원액을 처리한 실험 구의 감염률이 6.6%로, 대조로 물을 처리한 실험 구의 감염률 23.3%에 비해 저하되었다. 노지에서 재배하는 고추 '청양' 품종에 CMV는 인위적으로 접종하지 않고 자연 감염되도록 둔 상태에서 정식일부터 6월 말일까지 1주일 간격으로 유청 원액을 분무 처리한 결과, 6월5일 이전에 자연적으로 CMV에 감염된 식물체의 비율이 무처리와 살충제 처리에 비해 각각 18.9%와 16.7% 감소하였다. 유청의 식물 바이러스 감염억제에 대한 작용 기작을 알기 위하여 온실에서 PepMoV-kr에 감염된 식물체 즙액과 유청을 1:1로 혼합하여 고추에 인공접종하여 시간경과에 따른 외피단백질 농도 변화를 웨스턴 블로팅 방법으로 분석한 결과, 접종 6일 후 대조에 비하여 적었으나, 접종 9일 후에는 대조와 동일하게 증가하였다. 본 연구 결과는 유청이 고추에 발생하는 서로 다른 속에 속하는 두 종류의 바이러스인 CMV와 PepMoV에 의한 감염 억제에 효과가 있다는 것을 보여주었다.

Keywords

References

  1. Abdelbacki, A. M., Taha, S. H., Sitohy, M. Z., Abou Dawood, A. I., Abd- El Hamid, M. M. and Rezk, A. A. 2010. Inhibition of Tomato Yellow Leaf Curl Virus (TYLCV) using whey proteins. Virol. J. 7: 26. https://doi.org/10.1186/1743-422X-7-26
  2. Andersen, J. H., Osbakk, S. A., Vorland, L. H., Traavik, T. and Gutteberg, T. J. 2001. Lactoferrin and cyclic lactoferricin inhibit the entry of human cytomegalovirus into human fibroblasts. Antiviral Res. 51: 141-149. https://doi.org/10.1016/S0166-3542(01)00146-2
  3. Cho, J.-D., Lee, S.-H., Kim, J.-S., Choi, G.-S., Kim, H.-R., Chung, B.-N. et al. 2006. Characteristics of Cucumber mosaic virus-VCH causing vein chlorosis on red pepper in Korea. Res. Plant Dis. 12: 226- 230. (In Korean) https://doi.org/10.5423/RPD.2006.12.3.226
  4. Chung, B. N., Canto, T., Tenllado, F., Choi, K. S., Joa, J. H., Ahn, J. J. et al. 2016. The effects of high temperature on infection by Potato virus Y, Potato virus A, and Potato leafroll virus. Plant Pathol. J. 32: 321-328. https://doi.org/10.5423/PPJ.OA.12.2015.0259
  5. Chung, B. N., Choi, K. S., Ahn, J. J., Joa, J. H., Do, K. S. and Park, K.-S. 2015. Effects of temperature on systemic infection and symptom expression of Turnip mosaic virus in Chinese cabbage (Brassica campestris). Plant Pathol. J. 31: 363-370. https://doi.org/10.5423/PPJ.NT.06.2015.0107
  6. Chung, B. N., Yoon, J.-Y. and Palukaitis, P. 2013. Engineered resistance in potato against potato leafroll virus, potato virus A and potato virus Y. Virus Genes 47: 86-92. https://doi.org/10.1007/s11262-013-0904-4
  7. Clarke, N. M. and May, J. T. 2000. Effect of antimicrobial factors in human milk on rhinoviruses and milk-borne cytomegalovirus in vitro. J. Med. Microbiol. 49: 719-723. https://doi.org/10.1099/0022-1317-49-8-719
  8. Farrell, H. M. Jr., Jimenez-Flores, R., Bleck, G. T., Brown, E. M., Butler, J. E., Creamer, L. K. et al. 2004. Nomenclature of the proteins of Cows' milk -sixth revision. J. Dairy Sci. 87: 1641-1674. https://doi.org/10.3168/jds.S0022-0302(04)73319-6
  9. Gillian, F. 2005. Milk as a management tool for virus diseases. URL http://www.omafra.gov.on.ca/english/crops/hort/news/grower/2005/11gn05a1.htm [23 June 2020].
  10. Harmsen, M. C., Swart, P. J., de Bethune, M.-P., Pauwels, R., De Clercq, E., The, T. B. et al. 1995. Antiviral effects of plasma and milk proteins: lactoferrin shows potent activity against both human immunodeficiency virus and human cytomegalovirus replication in vitro. J. Infect. Dis. 172: 380-388. https://doi.org/10.1093/infdis/172.2.380
  11. Hasegawa, K., Motsuchi, W., Tanaka, S. and Dosako, S. 1994. Inhibition with lactoferrin of in vitro infection with human herpes virus. Jpn. J. Med. Sci. Biol. 47: 73-85. https://doi.org/10.7883/yoken1952.47.73
  12. Hu, J. S., Ferreira, S., Xu, M. Q., Lu, M., Iha, M., Pflum, E. et al. 1994. Transmission, movement and inactivation of Cymbidium mosaic and Odontoglossum ringspot viruses. Plant Dis. 78: 633-636. https://doi.org/10.1094/PD-78-0633
  13. Lu, L., Hangoc, G., Oliff, A., Chen, L. T., Shen, R. N. and Broxmeyer, H. E. 1987. Protective influence of lactoferrin on mice infected with the polycythemia-inducing strain of Friend virus complex. Cancer Res. 47: 4184-4188.
  14. Mann, D. M., Romm, E. and Migliorini, V. 1994. Delineation of the glycosaminoglycan-binding site in the human inflammatory response protein lactoferrin. J. Biol. Chem. 269: 23661-23667. https://doi.org/10.1016/S0021-9258(17)31566-1
  15. Marchetti, M., Longhi, C., Conte, M. P., Pisani, S., Valenti, P. and Seganti, L. 1996. Lactoferrin inhibits herpes simplex virus type 1 adsorption to Vero cells. Antiviral Res. 29: 221-231. https://doi.org/10.1016/0166-3542(95)00840-3
  16. Shimizu, K., Matsuzawa, H., Okada, K., Tazume, S., Dosako, S., Kawasaki, Y. et al. 1996. Lactoferrin-mediated protection of the host from murine cytomegalovirus infection by a T-cell-dependent augmentation of natural killer cell activity. Arch. Virol. 141: 1875-1889. https://doi.org/10.1007/BF01718201
  17. Superti, F., Ammendolia, M. G., Valenti, P. and Seganti, L. 1997. Antirotaviral activity of milk proteins: lactoferrin prevents rotavirus infection in the enterocyte-like cell line HT-29. Med. Microbiol. Immunol. 186: 83-91. https://doi.org/10.1007/s004300050049
  18. Swart, P. J., Harmsen, M. C., de Béthune, M. P., Pauwels, R., De Clercq, E., The, T. H. et al. 1996. Antiviral effects of plasma and milk proteins: lactoferrin shows potent antiviral activity on both HIV and HCMV replication in vitro in the same concentration range. Antiviral Res. 30: A35. (Abstract)
  19. Swart, P. J., Harmsen, M. C., Kuipers, M. E., Van Dijk, A. A., Van Der Strate, B. W. A., Van Berkel, P. H. C. et al. 1999. Charge modification of plasma and milk proteins results in antiviral active compounds. J. Pept. Sci. 5: 563-576. https://doi.org/10.1002/(SICI)1099-1387(199912)5:12<563::AID-PSC226>3.0.CO;2-3
  20. Waarts, B.-L., Aneke, O. J. C., Smit, J. M., Kimata, K., Bittman, R., Meijer, D. K. F. et al. 2005. Antiviral activity of human lactoferrin: inhibition of alphavirus interaction with heparan sulfate. Virology 333: 284-292. https://doi.org/10.1016/j.virol.2005.01.010
  21. Wu, H. F., Monroe, D. M. and Church, F. C. 1995. Characterization of the glycosaminoglycan-binding region of lactoferrin. Arch. Biochem. Biophys. 317: 85-92. https://doi.org/10.1006/abbi.1995.1139
  22. Yi, M., Kaneko, S., Yu, D. Y. and Murakami, S. 1997. Hepatitis C virus envelope proteins bind lactoferrin. J. Virol. 71: 5997-6002. https://doi.org/10.1128/jvi.71.8.5997-6002.1997
  23. Zapata, R. C., Singh, A., Pezeshki, A., Nibber, T. and Chelikani, P. K. 2017. Whey protein components - lactalbumin and lactoferrin - improve energy balance and metabolism. Sci. Rep. 7: 9917. https://doi.org/10.1038/s41598-017-09781-2