References
- Kwon DY, Chung KR. Korean diets and their tastes. In: Park KY, Kwon DY, Park S, Lee KW, editors. Korean Functional Foods: Composition, Processing, and Health Benefits. Boca Raton (FL); CRC Press; 2017. p.23-78.
- Kwon DY. Humanity of Korean diet. Seoul: Health Letter; 2019
- Kim SH, Kim MS, Lee MS, Park YS, Lee HJ, Kang SA, et al. Korean diet: characteristics and historical background. J Ethnic Foods 2016; 3(1): 26-31. https://doi.org/10.1016/j.jef.2016.03.002
- Kim HJ, Kim Y, Cho Y, Jun B, Oh KW. Trends in the prevalence of major cardiovascular disease risk factors among Korean adults: results from the Korea National Health and Nutrition Examination Survey, 1998-2012. Int J Cardiol 2014; 174(1): 64-72. https://doi.org/10.1016/j.ijcard.2014.03.163
- Lee SH, Tao S, Kim HS. The prevalence of metabolic syndrome and its related risk complications among Koreans. Nutrients 2019; 11(8): E1755.
- Lee SE, Han K, Kang YM, Kim SO, Cho YK, Ko KS, et al. Trends in the prevalence of metabolic syndrome and its components in South Korea: Findings from the Korean National Health Insurance Service Database (2009-2013). PLoS One 2018; 13(3): e0194490. https://doi.org/10.1371/journal.pone.0194490
- Jun S, Ha K, Chung S, Joung H. Meat and milk intake in the rice-based Korean diet: impact on cancer and metabolic syndrome. Proc Nutr Soc 2016; 75(3): 374-384. https://doi.org/10.1017/S0029665116000112
- Kim J, Jo I. Grains, vegetables, and fish dietary pattern is inversely associated with the risk of metabolic syndrome in South Korean adults. J Am Diet Assoc 2011; 111(8): 1141-1149. https://doi.org/10.1016/j.jada.2011.05.001
- Kim SH. Cultural perspectives and current consumption changes of cooked rice in Korean diet. Nutr Res Pract 2007; 1(1): 8-13. https://doi.org/10.4162/nrp.2007.1.1.8
- Jung SJ, Park SH, Choi EK, Cha YS, Cho BH, Kim YG, et al. Beneficial effects of Korean traditional diets in hypertensive and type 2 diabetic patients. J Med Food 2014; 17(1): 161-171. https://doi.org/10.1089/jmf.2013.3042
- Jung SJ, Chae SW. Effects of adherence to Korean diets on serum GGT and cardiovascular disease risk factors in patients with hypertension and diabetes. J Nutr Health 2018; 51(5): 386-399. https://doi.org/10.4163/jnh.2018.51.5.386
- Kang M, Paik HY, Wie GA, Joung H. Development of healthy Han-sik nutrition education program featuring consumption of Korean foods for prevention of metabolic syndrome in Korean adults. Korean J Nutr 2012; 45(6): 552-561. https://doi.org/10.4163/kjn.2012.45.6.552
- Schroeder N, Park YH, Kang MS, Kim Y, Ha GK, Kim HR, et al. A randomized trial on the effects of 2010 Dietary Guidelines for Americans and Korean diet patterns on cardiovascular risk factors in overweight and obese adults. J Acad Nutr Diet 2015; 115(7): 1083-1092. https://doi.org/10.1016/j.jand.2015.03.023
- Ha K, Kim K, Chun OK, Joung H, Song Y. Differential association of dietary carbohydrate intake with metabolic syndrome in the US and Korean adults: data from the 2007-2012 NHANES and KNHANES. Eur J Clin Nutr 2018; 72(6): 848-860. https://doi.org/10.1038/s41430-017-0031-8
- Fuller NR, Lau NS, Denyer G, Caterson ID. A 12-month, randomised, controlled trial to examine the efficacy of the Korean diet in an Australian overweight and obese population - A follow up analysis. Obes Res Clin Pract 2012; 6(4): e263-e346. https://doi.org/10.1016/j.orcp.2012.08.195
- Song Y, Joung H. A traditional Korean dietary pattern and metabolic syndrome abnormalities. Nutr Metab Cardiovasc Dis 2012; 22(5): 456-462. https://doi.org/10.1016/j.numecd.2010.09.002
- Chae SW. Beneficial effects of Korean traditional diet in patients with hypertension and type 2 diabetes. Food Ind Nutr 2011; 16(2): 15-26.
- Ahn SM, Shin WC, Jeong HB, Seo YJ, Jeong HR, Yoon JH, et al. 8 years report of urine organic acid analysis - Comparison before and after introduction of neonatal screening test using tandem mass spectrometry. J Korean Soc Inherit Metab Dis 2018; 18(1): 1-12.
- Lee HJ. Organic acidemias in Korea. J Korean Pediatr Soc 2002; 45(12): 1459-1476.
- Tretter L, Patocs A, Chinopoulos C. Succinate, an intermediate in metabolism, signal transduction, ROS, hypoxia, and tumorigenesis. Biochim Biophys Acta 2016; 1857(8): 1086-1101. https://doi.org/10.1016/j.bbabio.2016.03.012
- Fahien LA, MacDonald MJ. The succinate mechanism of insulin release. Diabetes 2002; 51(9): 2669-2676. https://doi.org/10.2337/diabetes.51.9.2669
- Deana R, Meneghello R, Manzi L, Gregolin C. Formation of acetoacetate from 3-hydroxy-3- methylglutarate by rat liver and isolation of a mitochondrial coenzyme A-transferase activity involved. Biochem J 1974; 138(3): 481-486. https://doi.org/10.1042/bj1380481
-
Tannahill GM, Curtis AM, Adamik J, Palsson-McDermott EM, McGettrick AF, Goel G, et al. Succinate is an inflammatory signal that induces IL-
$1{\beta}$ through HIF-$1{\alpha}$ . Nature 2013; 496(7444): 238-242. https://doi.org/10.1038/nature11986 - Mills E, O'Neill LA. Succinate: a metabolic signal in inflammation. Trends Cell Biol 2014; 24(5): 313-320. https://doi.org/10.1016/j.tcb.2013.11.008
- Yang M, Pollard PJ. Succinate: a new epigenetic hacker. Cancer Cell 2013; 23(6): 709-711. https://doi.org/10.1016/j.ccr.2013.05.015
- Connors J, Dawe N, Van Limbergen J. The role of succinate in the regulation of intestinal inflammation. Nutrients 2018; 11(1): E25.
- Calanchini M, Tadman M, Krogh J, Fabbri A, Grossman A, Shine B. Measurement of urinary 5-HIAA: correlation between spot versus 24-h urine collection. Endocr Connect 2019; 8(8): 1082-1088. https://doi.org/10.1530/EC-19-0269
- Jayamohananan H, Manoj Kumar MK, T P A. 5-HIAA as a potential biological marker for neurological and psychiatric disorders. Adv Pharm Bull 2019; 9(3): 374-381. https://doi.org/10.15171/apb.2019.044
- Haleem DJ, Mahmood K. Brain serotonin in high-fat diet-induced weight gain, anxiety and spatial memory in rats. Nutr Neurosci. Forthcoming 2019.
- Tohmola N, Johansson A, Sane T, Renkonen R, Hamalainen E, Itkonen O. Transient elevation of serum 5-HIAA by dietary serotonin and distribution of 5-HIAA in serum protein fractions. Ann Clin Biochem 2015; 52(Pt 4): 428-433. https://doi.org/10.1177/0004563214554842
- Young SN. How to increase serotonin in the human brain without drugs. J Psychiatry Neurosci 2007; 32(6): 394-399.
- Mawe GM, Coates MD, Moses PL. Review article: intestinal serotonin signalling in irritable bowel syndrome. Aliment Pharmacol Ther 2006; 23(8): 1067-1076. https://doi.org/10.1111/j.1365-2036.2006.02858.x
- Majewski M, Kozlowska A, Thoene M, Lepiarczyk E, Grzegorzewski WJ. Overview of the role of vitamins and minerals on the kynurenine pathway in health and disease. J Physiol Pharmacol 2016; 67(1): 3-19.
- Schwarcz R, Stone TW. The kynurenine pathway and the brain: Challenges, controversies and promises. Neuropharmacology 2017; 112(Pt B): 237-247. https://doi.org/10.1016/j.neuropharm.2016.08.003
- Capuron L, Geisler S, Kurz K, Leblhuber F, Sperner-Unterweger B, Fuchs D. Activated immune system and inflammation in healthy ageing: relevance for tryptophan and neopterin metabolism. Curr Pharm Des 2014; 20(38): 6048-6057. https://doi.org/10.2174/1381612820666140317110217
- Oxenkrug G, Ratner R, Summergrad P. Kynurenines and vitamin B6: link between diabetes and depression. J Bioinform Diabetes 2013; 1(1): http://openaccesspub.org/journals/download.php?file=51-OAP-JBD-IssuePDF.pdf.
- Paul L, Ueland PM, Selhub J. Mechanistic perspective on the relationship between pyridoxal 5'-phosphate and inflammation. Nutr Rev 2013; 71(4): 239-244. https://doi.org/10.1111/nure.12014
- Bryan GT. Quantitative studies on the urinary excretion of indoxyl sulfate (indican) in man following administration of L-tryptophan and acetyl-L-tryptophan. Am J Clin Nutr 1966; 19(2): 105-112. https://doi.org/10.1093/ajcn/19.2.105
- Huc T, Nowinski A, Drapala A, Konopelski P, Ufnal M. Indole and indoxyl sulfate, gut bacteria metabolites of tryptophan, change arterial blood pressure via peripheral and central mechanisms in rats. Pharmacol Res 2018; 130: 172-179. https://doi.org/10.1016/j.phrs.2017.12.025
- Konopelski P, Ufnal M. Indoles-gut bacteria metabolites of tryptophan with pharmacotherapeutic potential. Curr Drug Metab 2018; 19(10): 883-890. https://doi.org/10.2174/1389200219666180427164731
- Shin JH, Jung S, Kim SA, Kang MS, Kim MS, Joung H, et al. Differential effects of typical Korean versus American-style diets on gut microbial composition and metabolic profile in healthy overweight Koreans: a randomized crossover trial. Nutrients 2019; 11(10): E2450.
- Kim SA, Shin S, Ha K, Hwang Y, Park YH, Kang MS, et al. Effect of a balanced Korean diet on metabolic risk factors among overweight/obese Korean adults: a randomized controlled trial. Eur J Nutr. Forthcoming 2020.
- Song S, Song WO, Song Y. Dietary carbohydrate and fat intakes are differentially associated with lipid abnormalities in Korean adults. J Clin Lipidol 2017; 11(2): 338-347.e3. https://doi.org/10.1016/j.jacl.2017.01.016
Cited by
- A Traditional Korean Diet with a Low Dietary Inflammatory Index Increases Anti-Inflammatory IL-10 and Decreases Pro-Inflammatory NF-κB in a Small Dietary Intervention Study vol.12, pp.8, 2020, https://doi.org/10.3390/nu12082468