DOI QR코드

DOI QR Code

Bone regeneration and graft material resorption in extraction sockets grafted with bioactive silica-calcium phosphate composite (SCPC) versus non-grafted sockets: clinical, radiographic, and histological findings

  • Adel-Khattab, Doaa (Department of Oral Medicine, Periodontology and Diagnosis, Ain Shams University Faculty of Dentistry) ;
  • Afifi, Nermeen S. (Department of Oral Pathology, Ain Shams University Faculty of Dentistry) ;
  • el Sadat, Shaimaa M. Abu (Department of Oral Radiology, Ain Shams University Faculty of Dentistry) ;
  • Aboul-Fotouh, Mona N. (Master of Periodontology and Implantology, Ain Shams University Faculty of Dentistry) ;
  • Tarek, Karim (Master of Oral Surgery, Ain Shams University Faculty of Dentistry) ;
  • Horowitz, Robert A. (Departments of Oral Surgery, Periodontology and Implant Dentistry, The NYU College of Dentistry)
  • Received : 2019.12.06
  • Accepted : 2020.06.05
  • Published : 2020.12.31

Abstract

Purpose: The purpose of the present study was to evaluate the effect of silica-calcium phosphate composite (SCPC) granules on bone regeneration in extraction sockets. Methods: Ten patients were selected for a split-model study. In each patient, bone healing in SCPC-grafted and control ungrafted sockets was analyzed through clinical, radiographic, histomorphometric, and immunohistochemical assessments 6 months postoperatively. Results: A radiographic assessment using cone-beam computed tomography showed minimal ridge dimension changes in SCPC-grafted sockets, with 0.39 mm and 1.79 mm decreases in height and width, respectively. Core bone biopsy samples were obtained 6 months post-extraction during implant placement and analyzed. The average percent areas occupied by mature bone, woven bone, and remnant particles in the SCPC-grafted sockets were 41.3%±12%, 20.1%±9.5%, and 5.3%±4.4%, respectively. The percent areas of mature bone and woven bone formed in the control ungrafted sockets at the same time point were 31%±14% and 24.1%±9.4%, respectively. Histochemical and immunohistochemical analyses showed dense mineralized bundles of type I collagen with high osteopontin expression intensity in the grafted sockets. The newly formed bone was well vascularized, with numerous active osteoblasts, Haversian systems, and osteocytes indicating maturation. In contrast, the new bone in the control ungrafted sockets was immature, rich in type III collagen, and had a low osteocyte density. Conclusions: The resorption of SCPC granules in 6 months was coordinated with better new bone formation than was observed in untreated sockets. SCPC is a resorbable bone graft material that enhances bone formation and maturation through its stimulatory effect on bone cell function.

Keywords

Acknowledgement

The authors wish to thank Prof. Ahmed El-Ghannam for supplying the silica-calcium phosphate composite bone grafts.

References

  1. Van der Weijden F, Dell'Acqua F, Slot DE. Alveolar bone dimensional changes of post-extraction sockets in humans: a systematic review. J Clin Periodontol 2009;36:1048-58. https://doi.org/10.1111/j.1600-051X.2009.01482.x
  2. Chappuis V, Araujo MG, Buser D. Clinical relevance of dimensional bone and soft tissue alterations postextraction in esthetic sites. Periodontol 2000 2017;73:73-83. https://doi.org/10.1111/prd.12167
  3. Mecall RA, Rosenfeld AL. Influence of residual ridge resorption patterns on implant fixture placement and tooth position. 1. Int J Periodontics Restorative Dent 1991;11:8-23.
  4. Darby I, Chen ST, Buser D. Ridge preservation techniques for implant therapy. Int J Oral Maxillofac Implants 2009;24 Suppl:260-71.
  5. Beck TM, Mealey BL. Histologic analysis of healing after tooth extraction with ridge preservation using mineralized human bone allograft. J Periodontol 2010;81:1765-72. https://doi.org/10.1902/jop.2010.100286
  6. Collins JR, Jimenez E, Martinez C, Polanco RT, Hirata R, Mousa R, et al. Clinical and histological evaluation of socket grafting using different types of bone substitute in adult patients. Implant Dent 2014;23:489-95.
  7. Wang HL, Tsao YP. Histologic evaluation of socket augmentation with mineralized human allograft. Int J Periodontics Restorative Dent 2008;28:231-7.
  8. Horowitz RA, Mazor Z, Miller RJ, Krauser J, Prasad HS, Rohrer MD. Clinical evaluation alveolar ridge preservation with a beta-tricalcium phosphate socket graft. Compend Contin Educ Dent 2009;30:588-90.
  9. Stavropoulos A, Kostopoulos L, Nyengaard JR, Karring T. Deproteinized bovine bone (Bio-Oss) and bioactive glass (Biogran) arrest bone formation when used as an adjunct to guided tissue regeneration (GTR): an experimental study in the rat. J Clin Periodontol 2003;30:636-43. https://doi.org/10.1034/j.1600-051X.2003.00093.x
  10. Aghaloo TL, Moy PK. Which hard tissue augmentation techniques are the most successful in furnishing bony support for implant placement? Int J Oral Maxillofac Implants 2007;22 Suppl:49-70.
  11. Artzi Z, Tal H, Dayan D. Porous bovine bone mineral in healing of human extraction sockets. Part 1: histomorphometric evaluations at 9 months. J Periodontol 2000;71:1015-23. https://doi.org/10.1902/jop.2000.71.6.1015
  12. Fillingham Y, Jacobs J. Bone grafts and their substitutes. Bone Joint J 2016;98-B:6-9. https://doi.org/10.1302/0301-620X.98B.36350
  13. Artzi Z, Givol N, Rohrer MD, Nemcovsky CE, Prasad HS, Tal H. Qualitative and quantitative expression of bovine bone mineral in experimental bone defects. Part 2: Morphometric analysis. J Periodontol 2003;74:1153-60. https://doi.org/10.1902/jop.2003.74.8.1153
  14. Weiss P, Layrolle P, Clergeau LP, Enckel B, Pilet P, Amouriq Y, et al. The safety and efficacy of an injectable bone substitute in dental sockets demonstrated in a human clinical trial. Biomaterials 2007;28:3295-305. https://doi.org/10.1016/j.biomaterials.2007.04.006
  15. O'Neill E, Awale G, Daneshmandi L, Umerah O, Lo KW. The roles of ions on bone regeneration. Drug Discov Today 2018;23:879-90. https://doi.org/10.1016/j.drudis.2018.01.049
  16. Zhai W, Lu H, Chen L, Lin X, Huang Y, Dai K, et al. Silicate bioceramics induce angiogenesis during bone regeneration. Acta Biomater 2012;8:341-9. https://doi.org/10.1016/j.actbio.2011.09.008
  17. El-Ghannam A, Ning CQ. Effect of bioactive ceramic dissolution on the mechanism of bone mineralization and guided tissue growth in vitro. J Biomed Mater Res A 2006;76A:386-97. https://doi.org/10.1002/jbm.a.30517
  18. Fahmy RA, Mahmoud N, Soliman S, Nouh SR, Cunningham L, El-Ghannam A. Acceleration of alveolar ridge augmentation using a low dose of rhBMP2 loaded on a resorbable bioactive ceramic. J Oral Maxillofac Surg 2015;73:2257-72. https://doi.org/10.1016/j.joms.2015.07.004
  19. Fahmy RA, Soliman S, El-Ghannam A, Nouh SR. Enhancement of vertical alveolar ridge augmentation in canine defect model grafted with resorbable bioceramic composite. Key Eng Mater 2017;720:53-7.
  20. Elian N, Cho SC, Froum S, Smith RB, Tarnow DP. A simplified socket classification and repair technique. Pract Proced Aesthet Dent 2007;19:99-104.
  21. Choukroun J, Adda FB, Schoeffler C, Vervelle AG. Une opportunite en paro-implantologie: le PRF. Implantodontie 2001;42:55-62.
  22. Tan WL, Wong TL, Wong MC, Lang NP. A systematic review of post-extractional alveolar hard and soft tissue dimensional changes in humans. Clin Oral Implants Res 2012;23 Suppl 5:1-21.
  23. Hammerle CH, Araujo MG, Simion M; Osteology Consensus Group 2011. Evidence-based knowledge on the biology and treatment of extraction sockets. Clin Oral Implants Res 2012;23 Suppl 5:80-2. https://doi.org/10.1111/j.1600-0501.2011.02370.x
  24. Kassim B, Ivanovski S, Mattheos N. Current perspectives on the role of ridge (socket) preservation procedures in dental implant treatment in the aesthetic zone. Aust Dent J 2014;59:48-56.
  25. Lekovic V, Kenney EB, Weinlaender M, Han T, Klokkevold P, Nedic M, et al. A bone regenerative approach to alveolar ridge maintenance following tooth extraction. Report of 10 cases. J Periodontol 1997;68:563-70. https://doi.org/10.1902/jop.1997.68.6.563
  26. Negri B, Zuhr O, Fickl S, Ciurana XR, Navarro Martinez JM, Blanco VM. Socket seal surgery: clinical uses in implant dentistry and guided bone regeneration procedures for single tooth replacement in the esthetic zone. Quintessence Int 2016;47:123-39.
  27. Hosni A, El-Beialy WR, Ezz M. Modified lateral sinus lift using disc-form silica calcium-phosphate NanoComposite and consequent implant placement. Future Dent J 2018;4:126-34. https://doi.org/10.1016/j.fdj.2018.10.003
  28. Gupta G, Kirakodu S, El-Ghannam A. Dissolution kinetics of a Si-rich nanocomposite and its effect on osteoblast gene expression. J Biomed Mater Res A 2007;80A:486-96. https://doi.org/10.1002/jbm.a.31005
  29. Gupta G, El-Ghannam A, Kirakodu S, Khraisheh M, Zbib H. Enhancement of osteoblast gene expression by mechanically compatible porous Si-rich nanocomposite. J Biomed Mater Res B Appl Biomater 2007;81B:387-96. https://doi.org/10.1002/jbm.b.30675
  30. El-Ghannam AR. Advanced bioceramic composite for bone tissue engineering: design principles and structure-bioactivity relationship. J Biomed Mater Res A 2004;69A:490-501. https://doi.org/10.1002/jbm.a.30022
  31. Barone A, Ricci M, Tonelli P, Santini S, Covani U. Tissue changes of extraction sockets in humans: a comparison of spontaneous healing vs. ridge preservation with secondary soft tissue healing. Clin Oral Implants Res 2013;24:1231-7.
  32. Fotek PD, Neiva RF, Wang HL. Comparison of dermal matrix and polytetrafluoroethylene membrane for socket bone augmentation: a clinical and histologic study. J Periodontol 2009;80:776-85. https://doi.org/10.1902/jop.2009.080514
  33. Galindo Moreno P, Hernandez Cortes P, Padial Molina M, Vizoso ML, Crespo Lora V, O'Valle Ravassa F. Immunohistochemical osteopontin expression in bone xenograft in clinical series of maxillary sinus lift. J Oral Sci Rehabil 2015;1:42-50.
  34. Roach HI. Why does bone matrix contain non-collagenous proteins? The possible roles of osteocalcin, osteonectin, osteopontin and bone sialoprotein in bone mineralisation and resorption. Cell Biol Int 1994;18:617-28. https://doi.org/10.1006/cbir.1994.1088
  35. Iasella JM, Greenwell H, Miller RL, Hill M, Drisko C, Bohra AA, et al. Ridge preservation with freeze-dried bone allograft and a collagen membrane compared to extraction alone for implant site development: a clinical and histologic study in humans. J Periodontol 2003;74:990-9. https://doi.org/10.1902/jop.2003.74.7.990
  36. Aniket , Reid R, Hall B, Marriott I, El-Ghannam A. The synergistic relationship between surface roughness and chemistry of bioactive ceramic coating on early osteoblast responses. J Biomed Mater Res 2015;103:1961-73. https://doi.org/10.1002/jbm.a.35326
  37. Galow AM, Rebl A, Koczan D, Bonk SM, Baumann W, Gimsa J. Increased osteoblast viability at alkaline pH in vitro provides a new perspective on bone regeneration. Biochem Biophys Rep 2017;10:17-25.
  38. Mladenovic Z, Johansson A, Willman B, Shahabi K, Bjorn E, Ransjo M. Soluble silica inhibits osteoclast formation and bone resorption in vitro. Acta Biomater 2014;10:406-18. https://doi.org/10.1016/j.actbio.2013.08.039
  39. Al-Sabbagh M, Burt J, Barakat A, Kutkut A, El-Ghannam A. Alveolar ridge preservation using resorbable bioactive ceramic composite: a histological study. J Int Acad Periodontol 2013;15:91-8.

Cited by

  1. Inhibition of osteoclast activities by SCPC bioceramic promotes osteoblast‐mediated graft resorption and osteogenic differentiation vol.109, pp.9, 2021, https://doi.org/10.1002/jbm.a.37167