References
- H. Mazrou, M. Hamadouche, Application of artificial neural network for safety core parameters prediction in LWRs, Prog. Nucl. Energy 44 (2004) 263-275.
- International Atomic Energy Agence, Research Reactor Core Conversion from the Use of Highly Enriched Uranium to the Use of Low Enriched Uranium Fuels Guidebook, vol. 233, IAEA-TECDOC, 1980.
- A. Hedayat, H. Davilu, A.A. Barfrosh, K. Sepanloo, Estimation of research reactor core parameters using cascade feed forward artificial neural networks, Prog. Nucl. Energy 51 (2009) 709-718.
- S.M. Mirvakili, F. Faghihi, H. Khalafi, Developing a computational tool for predicting physical parameters of a typical VVER-1000 core based on artificial neural network, Ann. Nucl. Energy 50 (2012) 82-93.
- A. Garg, P.S. Sastry, M. Pandey, U.S. Dixit, S.K. Gupta, Numerical simulation and artificial neural network modeling of natural circulation boiling water reactor, Nucl. Eng. Des. 237 (2007) 230-239.
- X. Wei, J. Wan, F. Zhao, Prediction study on PCI failure of reactor fuel based on a radial basis function neural network, Science and Technology of Nuclear Installations (2016) 1-6. Article ID 4720685.
- M.I. Radaideh, T. Kozlowski, Analyzing nuclear reactor simulation data and uncertainty with the Group Method of Data Handling, Nucl. Eng. Technol. 52 (2020) 287-295.
- M.I. Radaideh, T. Kozlowski, Surrogate modeling of advanced computer simulations using deep Gaussian processes, Reliab. Eng. Syst. Saf. 195 (2020), 106731.
- J. Yang, J. Kim, An accident diagnosis algorithm using long short-term memory, Nucl. Eng. Technol. 50 (2018) 582-588.
- M.I. Radaideh, T. Kozlowski, Combining simulations and data with deep learning and uncertainty quantification for advanced energy modelling, Int. J. Energy Res. 43 (2019) 7866-7890.
- Y. Do Koo, Y.J. An, C.H. Kim, M.G. Na, Nuclear reactor vessel water level prediction during severe accidents using deep neural networks, Nucl. Eng. Technol. 51 (2019) 723-730.
- J.J. Ortiz, I. Requena, Using a multi-state recurrent neural network to optimize loading patterns in BWRs, Ann. Nucl. Energy 31 (2004) 789-803.
- J.L. Montes, J.L. Francois, J.J. Ortiz, C. Martin-Del-Campo, R. Perusquia, Local power peaking factor estimation in nuclear fuel by artificial neural networks, Ann. Nucl. Energy 36 (2009) 121-130.
- V.A. Phung, D. Grishchenko, S. Galushin, P. Kudinov, Prediction of in-vessel debris bed properties in BWR severe accident scenarios using MELCOR and neural networks, Ann. Nucl. Energy 120 (2018) 461-476.
- T. Lefvert, Ringhals-1 Stability Benchmark: Final Report, NEA/NSC/DOC(96) 22, OECD Nuclear Energy Agency, 1996.
- T. Downar, Y. Xu, V. Seker, A. Ward, PARCS: Purdue Advance Reactor Core Simulator, Presented at Physics of Reactors (PHYSOR-2002), Seoul, Korea, October 7-10, 2002.
- A. Zameer, S.M. Mirza, N.M. Mirza, Core loading pattern optimization of a typical two-loop 300 MWe PWR using Simulated Annealing (SA), novel crossover Genetic Algorithms (GA) and hybrid GA (SA) schemes, Ann. Nucl. Energy 65 (2014) 122-131.
- E.F. Faria, C. Pereira, Nuclear fuel loading pattern optimisation using a neural network, Ann. Nucl. Energy 30 (2003) 603-613.
- Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature 521 (2015) 436-444.
- W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu, F.E. Alsaadi, A survey of deep neural network architectures and their applications, Neurocomputing 234 (2017) 11-26.
- G. Hinton, L. Deng, D. Yu, G. Dahl, A.R. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen, B. Kingsbury, T. Sainath, Deep neural networks for acoustic modeling in speech recognition, IEEE Signal Process. Mag. 29 (2012) 82-97.
- I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, The MIT press, London, England, 2016.
- L. Bottou, Large-scale machine learning with stochastic gradient descent, in: Proc. of 19th Int. Computational Statistics (COMPSTAT'2010), Paris, France, August 22-27, 2010 vol. 1, Physica-Verlag HD, 2010, pp. 177-186.
- D.P. Kingma, J. Ba, Adam: A Method for Stochastic Optimization, 2014 arXiv preprint arXiv:1412.6980.
- F. Chollet, Keras. https://keras.io, 2015.