DOI QR코드

DOI QR Code

Human Organic Anion Transporting Polypeptide 1B3 Applied as an MRI-Based Reporter Gene

  • Song-Ee Baek (Department of Radiology, Severance Hospital, Yonsei University College of Medicine) ;
  • Asad Ul-Haq (Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Dae Hee Kim (Yonsei University College of Medicine) ;
  • Hyoung Wook Choi (Yonsei University College of Medicine) ;
  • Myeong-Jin Kim (Department of Radiology, Severance Hospital, Yonsei University College of Medicine) ;
  • Hye Jin Choi (Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine) ;
  • Honsoul Kim (Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine)
  • Received : 2019.12.03
  • Accepted : 2020.01.19
  • Published : 2020.06.01

Abstract

Objective: Recent innovations in biology are boosting gene and cell therapy, but monitoring the response to these treatments is difficult. The purpose of this study was to find an MRI-reporter gene that can be used to monitor gene or cell therapy and that can be delivered without a viral vector, as viral vector delivery methods can result in long-term complications. Materials and Methods: CMV promoter-human organic anion transporting polypeptide 1B3 (CMV-hOATP1B3) cDNA or CMV-blank DNA (control) was transfected into HEK293 cells using Lipofectamine. OATP1B3 expression was confirmed by western blotting and confocal microscopy. In vitro cell phantoms were made using transfected HEK293 cells cultured in various concentrations of gadoxetic acid for 24 hours, and images of the phantoms were made with a 9.4T micro-MRI. In vivo xenograft tumors were made by implanting HEK293 cells transfected with CMV-hOATP1B3 (n = 4) or CMV-blank (n = 4) in 8-week-old male nude mice, and MRI was performed before and after intravenous injection of gadoxetic acid (1.2 µL/g). Results: Western blot and confocal microscopy after immunofluorescence staining revealed that only CMV-hOATP1B3-transfected HEK293 cells produced abundant OATP1B3, which localized at the cell membrane. OATP1B3 expression levels remained high through the 25th subculture cycle, but decreased substantially by the 50th subculture cycle. MRI of cell phantoms showed that only the CMV-hOATP1B3-transfected cells produced a significant contrast enhancement effect. In vivo MRI of xenograft tumors revealed that only CMV-hOATP1B3-transfected HEK293 tumors demonstrated a T1 contrast effect, which lasted for at least 5 hours. Conclusion: The human endogenous OATP1B3 gene can be non-virally delivered into cells to induce transient OATP1B3 expression, leading to gadoxetic acid-mediated enhancement on MRI. These results indicate that hOATP1B3 can serve as an MRI-reporter gene while minimizing the risk of long-term complications.

Keywords

Acknowledgement

This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. NRF-2017R1C1B1004378).

References

  1. Lyons SK, Patrick PS, Brindle KM. Imaging mouse cancer models in vivo using reporter transgenes. Cold Spring Harb Protoc 2013;2013:685-699  https://doi.org/10.1101/pdb.top069864
  2. Brader P, Serganova I, Blasberg RG. Noninvasive molecular imaging using reporter genes. J Nucl Med 2013;54:167-172  https://doi.org/10.2967/jnumed.111.099788
  3. Shaner NC, Campbell RE, Steinbach PA, Giepmans BN, Palmer AE, Tsien RY. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 2004;22:1567-1572  https://doi.org/10.1038/nbt1037
  4. Ntziachristos V. Going deeper than microscopy: the optical imaging frontier in biology. Nat Methods 2010;7:603-614  https://doi.org/10.1038/nmeth.1483
  5. Anderson MW, Schrijver I. Next generation DNA sequencing and the future of genomic medicine. Genes (Basel) 2010;1:38-69  https://doi.org/10.3390/genes1010038
  6. Esplin ED, Oei L, Snyder MP. Personalized sequencing and the future of medicine: discovery, diagnosis and defeat of disease. Pharmacogenomics 2014;15:1771-1790  https://doi.org/10.2217/pgs.14.117
  7. Coombe L, Kadri A, Martinez JF, Tatachar V, Gallicano GI. Current approaches in regenerative medicine for the treatment of diabetes: introducing CRISPR/CAS9 technology and the case for non-embryonic stem cell therapy. Am J Stem Cells 2018;7:104-113 
  8. Karimian A, Azizian K, Parsian H, Rafieian S, Shafiei-Irannejad V, Kheyrollah M, et al. CRISPR/Cas9 technology as a potent molecular tool for gene therapy. J Cell Physiol 2019;234:12267-12277  https://doi.org/10.1002/jcp.27972
  9. Dadheech N, James Shapiro AM. Human induced pluripotent stem cells in the curative treatment of diabetes and potential impediments ahead. Adv Exp Med Biol 2019;1144:25-35  https://doi.org/10.1007/5584_2018_305
  10. Nagoshi N, Tsuji O, Nakamura M, Okano H. Cell therapy for spinal cord injury using induced pluripotent stem cells. Regen Ther 2019;11:75-80  https://doi.org/10.1016/j.reth.2019.05.006
  11. Del Pozo-Rodriguez A, Rodriguez-Gascon A, Rodriguez-Castejon J, Vicente-Pascual M, Gomez-Aguado I, Battaglia LS, et al. Gene therapy. Adv Biochem Eng Biotechnol 2020;171:321-368  https://doi.org/10.1007/10_2019_109
  12. Mollanoori H, Teimourian S. Therapeutic applications of CRISPR/Cas9 system in gene therapy. Biotechnol Lett 2018;40:907-914  https://doi.org/10.1007/s10529-018-2555-y
  13. Steffin DHM, Hsieh EM, Rouce RH. Gene therapy: current applications and future possibilities. Adv Pediatr 2019;66:37-54  https://doi.org/10.1016/j.yapd.2019.04.001
  14. Gilad AA, Winnard PT Jr, van Zijl PC, Bulte JW. Developing MR reporter genes: promises and pitfalls. NMR Biomed 2007;20:275-290  https://doi.org/10.1002/nbm.1134
  15. Van Beers BE, Pastor CM, Hussain HK. Primovist, Eovist: what to expect? J Hepatol 2012;57:421-429  https://doi.org/10.1016/j.jhep.2012.01.031
  16. Bartolozzi C, Crocetti L, Lencioni R, Cioni D, Della Pina C, Campani D. Biliary and reticuloendothelial impairment in hepatocarcinogenesis: the diagnostic role of tissue-specific MR contrast media. Eur Radiol 2007;17:2519-2530  https://doi.org/10.1007/s00330-007-0602-5
  17. Leonhardt M, Keiser M, Oswald S, Kuhn J, Jia J, Grube M, et al. Hepatic uptake of the magnetic resonance imaging contrast agent Gd-EOB-DTPA: role of human organic anion transporters. Drug Metab Dispos 2010;38:1024-1028  https://doi.org/10.1124/dmd.110.032862
  18. Huppertz A, Balzer T, Blakeborough A, Breuer J, Giovagnoni A, Heinz-Peer G, et al. Improved detection of focal liver lesions at MR imaging: multicenter comparison of gadoxetic acid-enhanced MR images with intraoperative findings. Radiology 2004;230:266-275  https://doi.org/10.1148/radiol.2301020269
  19. Nystrom NN, Hamilton AM, Xia W, Liu S, Scholl TJ, Ronald JA. Longitudinal visualization of viable cancer cell intratumoral distribution in mouse models using oatp1a1-enhanced magnetic resonance imaging. Invest Radiol 2019;54:302-311  https://doi.org/10.1097/RLI.0000000000000542
  20. Patrick PS, Hammersley J, Loizou L, Kettunen MI, Rodrigues TB, Hu DE, et al. Dual-modality gene reporter for in vivo imaging. Proc Natl Acad Sci U S A 2014;111:415-420  https://doi.org/10.1073/pnas.1319000111
  21. Wu MR, Hsiao JK, Liu HM, Huang YY, Tseng YJ, Chou PT, et al. In vivo imaging of insulin-secreting human pancreatic ductal cells using MRI reporter gene technique: a feasibility study. Magn Reson Med 2019;82:763-774  https://doi.org/10.1002/mrm.27749
  22. Wu MR, Liu HM, Lu CW, Shen WH, Lin IJ, Liao LW, et al. Organic anion-transporting polypeptide 1B3 as a dual reporter gene for fluorescence and magnetic resonance imaging. FASEB J 2018;32:1705-1715  https://doi.org/10.1096/fj.201700767R
  23. Glover DJ, Lipps HJ, Jans DA. Towards safe, non-viral therapeutic gene expression in humans. Nat Rev Genet 2005;6:299-310  https://doi.org/10.1038/nrg1577
  24. Lee W, Belkhiri A, Lockhart AC, Merchant N, Glaeser H, Harris EI, et al. Overexpression of OATP1B3 confers apoptotic resistance in colon cancer. Cancer Res 2008;68:10315-10323  https://doi.org/10.1158/0008-5472.CAN-08-1984
  25. Filippone A, Blakeborough A, Breuer J, Grazioli L, Gschwend S, Hammerstingl R, et al. Enhancement of liver parenchyma after injection of hepatocyte-specific MRI contrast media: a comparison of gadoxetic acid and gadobenate dimeglumine. J Magn Reson Imaging 2010;31:356-364  https://doi.org/10.1002/jmri.22054
  26. Reagan-Shaw S, Nihal M, Ahmad N. Dose translation from animal to human studies revisited. FASEB J 2008;22:659-661  https://doi.org/10.1096/fj.07-9574LSF
  27. Bang DH, Park SH, Jun HY, Moon HB, Kim SU, Yu DY, et al. Gd-EOB-DTPA enhanced micro-MR imaging of hepatic tumors in H-ras 12V transgenic mice. Acad Radiol 2011;18:13-19  https://doi.org/10.1016/j.acra.2010.08.007
  28. Park SH, Kim H, Kim EK, Kim H, Choi DK, Chung YE, et al. Aberrant expression of OATP1B3 in colorectal cancer liver metastases and its clinical implication on gadoxetic acid-enhanced MRI. Oncotarget 2017;8:71012-71023  https://doi.org/10.18632/oncotarget.20295
  29. Schmidt GP, Reiser MF, Baur-Melnyk A. Whole-body MRI for the staging and follow-up of patients with metastasis. Eur J Radiol 2009;70:393-400  https://doi.org/10.1016/j.ejrad.2009.03.045
  30. Ahrens ET, Bulte JW. Tracking immune cells in vivo using magnetic resonance imaging. Nat Rev Immunol 2013;13:755-763  https://doi.org/10.1038/nri3531
  31. Genove G, DeMarco U, Xu H, Goins WF, Ahrens ET. A new transgene reporter for in vivo magnetic resonance imaging. Nat Med 2005;11:450-454  https://doi.org/10.1038/nm1208
  32. Louie AY, Huber MM, Ahrens ET, Rothbacher U, Moats R, Jacobs RE, et al. In vivo visualization of gene expression using magnetic resonance imaging. Nat Biotechnol 2000;18:321-325  https://doi.org/10.1038/73780
  33. Weissleder R, Moore A, Mahmood U, Bhorade R, Benveniste H, Chiocca EA, et al. In vivo magnetic resonance imaging of transgene expression. Nat Med 2000;6:351-355  https://doi.org/10.1038/73219
  34. Kim HS, Woo J, Lee JH, Joo HJ, Choi Y, Kim H, et al. In vivo tracking of dendritic cell using MRI reporter gene, ferritin. PLoS One 2015;10:e0125291 
  35. Choi Y, Huh J, Woo DC, Kim KW. Use of gadoxetate disodium for functional MRI based on its unique molecular mechanism. Br J Radiol 2016;89:20150666 
  36. Li Z, Dullmann J, Schiedlmeier B, Schmidt M, von Kalle C, Meyer J, et al. Murine leukemia induced by retroviral gene marking. Science 2002;296:497 
  37. Obaidat A, Roth M, Hagenbuch B. The expression and function of organic anion transporting polypeptides in normal tissues and in cancer. Annu Rev Pharmacol Toxicol 2012;52:135-151  https://doi.org/10.1146/annurev-pharmtox-010510-100556
  38. Tsuboyama T, Onishi H, Kim T, Akita H, Hori M, Tatsumi M, et al. Hepatocellular carcinoma: hepatocyte-selective enhancement at gadoxetic acid-enhanced MR imaging--correlation with expression of sinusoidal and canalicular transporters and bile accumulation. Radiology 2010;255:824-833 https://doi.org/10.1148/radiol.10091557