References
- M.J. Song, "Korean Status and Prospects for Radioactive Waste Management", J. Nucl. Fuel Cycle Waste Technol., 1(1), 1-7 (2013). https://doi.org/10.7733/jnfcwt.2013.1.1.1
- G.-I. Park, M.K. Jeon, J.-H. Choi, K.-R. Lee, S.Y. Han, I.T. Kim, Y.-Z. Cho, and H.-S. Park, "Recent progress in waste treatment technology for pyroprocessing at KAERI", J. Nucl. Fuel Cycle Waste Technol., 17(3), 279-298 (2019). https://doi.org/10.7733/jnfcwt.2019.17.3.279
- C.E. Stevenson, The EBR-II fuel cycle story, American Nuclear Society, La Grange Park, Illinois (1987).
- Y. Sakamura and T. Omori, "Electrolytic reduction and electrorefining of uranium to develop pyrochemical reprocessing of oxide fuels", Nucl. Technol., 171(3), 266-275 (2010). https://doi.org/10.13182/NT10-A10861
- S.D. Herrmann, S.X. Li, M.F. Simpson, and S. Phongi-karoon, "Electrolytic reduction of spent nuclear oxide fuel as part of an integral process to separate and recover actinides from fission products", Sep. Sci. Technol., 41(10), 1965-1983 (2006). https://doi.org/10.1080/01496390600745602
-
W. Park, E.Y. Choi, S.W. Kim, S.C. Jeon, Y.H. Cho, and J.M. Hur, "Electrolytic reduction of a simulated oxide spent fuel and the fates of representative elements in a
$Li_2O$ -LiCl molten salt", J. Nucl. Mater., 477, 59-66 (2016). https://doi.org/10.1016/j.jnucmat.2016.04.058 -
E.Y. Choi, J. Lee, D.H. Heo, S.K. Lee, M.K. Jeon, S.S. Hong, S.W. Kim, H.W. Kang, S.C. Jeon, and J.M. Hur, "Electrolytic reduction runs of 0.6 kg scale-simulated oxide fuel in a
$Li_2O$ -LiCl molten salt using metal anode shrouds", J. Nucl. Mater., 489, 1-8 (2017). https://doi.org/10.1016/j.jnucmat.2017.03.035 - A. Merwin, P. Motsegood, J. Willit, and M.A. Williamson, "A parametric study of operating carbon anodes in the oxide reduction process", J. Nucl. Mater., 511, 297-303 (2018). https://doi.org/10.1016/j.jnucmat.2018.08.044
- S.W. Kim, M.K. Jeon, H.W. Kang, S.K. Lee, E.Y. Choi, W. Park, S.S. Hong, S.C. Oh, and J.M. Hur, "Carbon anode with repeatable use of LiCl molten salt for electrolytic reduction in pyroprocessing", J. Radioanal. Nucl. Chem., 310(1), 463-467 (2016). https://doi.org/10.1007/s10967-016-4786-5
- S.W. Kim, D.H. Heo, S.K. Lee, M.K. Jeon, W. Park, J.M. Hur, S.S. Hong, S.C. Oh, and E.Y. Choi, "A preliminary study of pilot-scale electrolytic reduction of UO2 using a graphite anode", Nucl. Eng. Technol., 49(7), 1451-1456 (2017). https://doi.org/10.1016/j.net.2017.05.004
- M.H. Brown, W.B. Delong, and J.R. Auld, "Corrosion by chlorine and by hydrogen chloride at high temperatures", Ind. Eng. Chem., 39(7), 839-844 (1947). https://doi.org/10.1021/ie50451a008
- Y. Ihara, H. Ohgame, K. Sakiyama, and K. Hashimoto, "The corrosion behaviour of iron in hydrogen chloride gas and gas mixtures of hydrogen chloride and oxygen at high temperatures", Corros. Sci., 21(12), 805-817 (1981). https://doi.org/10.1016/0010-938X(81)90023-8
- HSC Chemistry software, Outotec, Pori, Finland.
- F.J. Alvarez, D.M. Pasquevich, and A.E. Bohe, "Kinetics of the recovery of nickel from depleted catalysts used in the reforming of methane", Int. J. Hydrogen Energy, 33(13), 3438-3441 (2008). https://doi.org/10.1016/j.ijhydene.2008.04.014
- I. Ilic, B. Krstev, K. Cerovic, and S. Stopic, "The study of chlorination of nickel oxide by chlorine and calcium chloride in the presence of active additives", Scand. J. Metall., 26(1), 14-19 (1997).
- T.A. Anufrieva, L.E. Derlvukova, and M.V. Vinokurova, "Interaction of nickel oxide with chlorine", Russ. J. Inorg. Chem., 46(1), 16-19 (2001).
Cited by
- Corrosion Behavior of Inconel X-750 for Carbon Anode Oxide Reduction Application vol.18, pp.3, 2020, https://doi.org/10.7733/jnfcwt.2020.18.3.355
- Corrosion Behavior of Hastelloy C-276 for Carbon-anode-based Oxide Reduction Applications vol.18, pp.3, 2020, https://doi.org/10.7733/jnfcwt.2020.18.3.383