DOI QR코드

DOI QR Code

Computing Median Filter for over 16-bit Depth Images

16비트 깊이 이상의 이미지에서의 중간값 필터 계산

  • Kim, Jin Wook (Dept. of Computer Science, Korea National Open University)
  • Received : 2020.06.01
  • Accepted : 2020.06.24
  • Published : 2020.06.30

Abstract

The median filter that is used in various fields requiring image processing converts to a median value of pixels belonging to a radius r for all pixels in the image of n×m size. For 8-bit depth images, an O(nm) time algorithm exists but for over 16-bit depth images, there is an O(nmlog2r) time algorithm of Gil and Werman. In this paper, we propose an efficient median filter algorithm that works for more than 16-bit depth images. The time complexity of our algorithm is the same as that of Gil and Werman, but theoretical analysis and experimental results show that ours is efficient than above two times.

중간값 필터는 n×m 크기의 이미지와 반경 r이 주어지면 이미지의 모든 픽셀에 대해 반경 r에 속하는 픽셀들의 중간값으로 변환하는 것으로, 이미지 처리가 필요한 다양한 분야에서 활용되고 있다. 픽셀의 정보가 8비트인 경우에는 O(nm) 시간 알고리즘이 존재하나 16비트 이상에는 적용이 어렵고 대신 Gil과 Werman의 O(nmlog2r) 시간 알고리즘이 존재한다. 본 논문에서는 16비트 깊이 이상의 정보를 갖는 이미지에 대해서도 효율적으로 동작하는 중간값 필터 알고리즘을 제안한다. 시간 복잡도는 O(nmlog2r)로 Gil과 Werman의 알고리즘과 동일하지만 엄밀한 분석과 실험을 통해 2배 이상 향상됨을 보인다.

Keywords

References

  1. J. Tukey, Exploratory Data Analysis, Addison-Wesley Menlo Park, 1977.
  2. P. Maragos and R. Schafer, "Morphological Filters-Part II: Their Relations to Median, Order-Statistic Filters," IEEE Trans. on Acoustics, Speech, Signal Processing, vol.35, no.8, pp.1170-1184, 1987. DOI: 10.1109/TASSP.1987.1165254
  3. D. Mayerich, B. H. McCormick, J. Keyser, "Noise and Artifact Removal in Knife-Edge Scanning Microscopy," ISBI, pp.556-559, 2007. DOI: 10.1109/ISBI.2007.356912
  4. Y. Choe, L. C. Abbott, D. Han, P. S. Huang, J. Keyser, J. Kwon, D. Mayerich, Z. Melek, and B. H. McCormick, "Knife-Edge Scanning Microscopy: High-Throughput Imaging and Analysis of Massive Volumnes of Biological Microstructures," High-Throughput Image Reconstruction and Analysis: Intelligent Microscopy Applications, pp.11-37, 2008.
  5. J. Lee, W. An, and Y. Choe, "Mapping the Full Vascular Network in the Mouse Brain at Submicrometer Resolution," 39th Annual International Conference of the IEEE EMBC, 2017. DOI: 10.1109/EMBC.2017.8037564
  6. T. Huang, G. Yang, and G. Tang, "A Fast Two-Dimensional Median Filtering Algorithm," IEEE Trans. on Acoustics, Speech and Signal Processing, vol.27, pp.13-18, 1979. DOI: 10.1109/TASSP.1979.1163188
  7. B. Weiss, "Fast Median and Bilateral Filtering," ACM Trans. Graph., vol.25, pp.519-526, 2006. DOI: 10.1145/1179352.1141918
  8. S. Perreault and Patrick Hebert, "Median Filtering in Constant Time," IEEE Trans. on Image Processing, vol.16, no.9, pp.2389-2394, 2007. DOI: 10.1109/TIP.2007.902329
  9. A. Alekseychuk, "Hierarchical recursive running median," 19th IEEE International Conference on Image Processing, pp.109-112, 2012. DOI: 10.1109/ICIP.2012.6466807
  10. TC. Lu, CY. Tseng, CC. Huang, KM. Deng, "16-Bit DICOM Medical Images Lossless Hiding Scheme Based on Edge Sensing Prediction Mechanism," in Genetic and Evolutionary Computing. Advances in Intelligent Systems and Computing, vol.329. Springer, Cham, 2015. DOI: 10.1007/978-3-319-12286-1_19
  11. A. Darmont, High Dynamic Range Imaging: Sensors and Architectures, SPIE press, 2013.
  12. R. W. Floyd and R. L. Rivest, "Algorithm 489: the Algorithm SELECT - for Finding the i-th smallest of n elements [M1]," Communications of the ACM, vol.18, pp.173, 1975. DOI: 10.1145/360680.360694
  13. J. Gil and M. Werman, "Computing 2-d Min, Median, and Max Filters," IEEE Trans. Pattern Anal. Mach. Intell., vol.15, no.5, pp.504-507, 1993. DOI: 10.1109/34.211471