DOI QR코드

DOI QR Code

Estimating distribution changes of ten coastal plant species on the Korean Peninsula

한반도 해안식물 10종의 분포 변화 추정

  • Received : 2020.05.12
  • Accepted : 2020.06.24
  • Published : 2020.06.30

Abstract

Coastal regions are experiencing habitat changes due to coastal development and global warming. To estimate the future distribution of coastal plants on the Korean Peninsula due to climate change, the potential distribution of ten species of coastal plants was analyzed using the MaxEnt program. The study covered the eastern, western, and southern coastal areas of the Korean Peninsula. We used the distributional data of coastal plants of the East Asian region and the 19 climate variables of WorldClim 2.0. The future potential distribution was estimated using future climate variables projected from three general circulation models (CCSM4, MIROC-ESM, and MPI-ESM-LR), four representative concentration pathways (2.5, 4.5, 6.0, and 8.5), and two time periods (2050 and 2070). The annual mean temperature influenced the estimation of the potential distribution the most. Under predicted future distribution scenarios, Lathyrus japonicus, Glehnia littoralis, Calystegia soldanella, Vitex rotundifolia, Scutellaria strigillosa, Linaria japonica, and Ixeris repens are expected to show contracted distributions, whereas the distribution of Cnidium japonicum is expected to expand. Two species, Salsola komarovii and Carex kobomugi, are predicted to show similar distributions in the future compared to those in the present. The average potential distribution in the future suggests that the effects of climate change will be greater in the west and the south coastal regions than in the east coastal region. These results will be useful baseline data to establish a conservation strategy for coastal plants.

염습지 개발과 기후온난화로 인해 해안지역의 생물 서식환경이 변화하고 있다. 환경변화로 인한 한반도 해안식물들의 미래분포변화를 추정하기 위해 MaxEnt 프로그램을 이용하여 해안식물 10종의 예상분포지를 분석하였다. 연구지역은 한반도 동·서·남해안 지역을 대상으로 하였다. 예상분포지 추정은 해안식물의 동아시아 지역 분포자료와 WorldClim 2.0의 19개 기후변수를 사용하였다. 3개의 대기대순환모델(general circulation model; CCSM4, MIROC-ESM 그리고 MPI-ESM-LR)과 4가지 온실가스시나리오(representative concentration pathways; 2.5, 4.5, 6.0 그리고 8.5), 그리고 2개 기간(2050와 2070)이 반영된 미래 기후변수로 미래 예상분포지를 예측하였다. 분석결과 연평균 기온이 적정 분포지 추정에 가장 높은 기여를 하였다. 미래에 분포가 감소할 것으로 예상되는 분류군은 갯메꽃, 갯방풍, 갯씀바귀, 갯완두, 해란초, 참골무꽃, 순비기나무였으며, 분포가 증가할 것으로 예상되는 분류군은 갯사상자로 나타났다. 미래 분포가 현재와 비슷할 것으로 생각되는 분류군은 수송나물, 통보리사초였다. 각 식물의 미래 예상분포지를 종합하여 분포평균을 계산한 결과 서해와 남해가 동해보다 기후변화의 영향을 크게 받을 것으로 예상된다. 이 결과는 해안식물의 보전전략을 수립하는데 기초자료로 활용될 것이다.

Keywords

References

  1. Abel, N., R. Gorddard, B. Harman, A. Leitch, J. Langridge, A. Ryan and S. Heyenga. 2011. Sea level rise, coastal development and planned retreat: analytical framework, governance principles and an Australian case study. Environmental Science and Policy 14: 279-288. https://doi.org/10.1016/j.envsci.2010.12.002
  2. Anthony, A., J. Atwood, P. August, C. Byron, S. Cobb, C. Foster, C. Fry, A. Gold, K. Hagos, L. Heffner, D. Q. Kellogg, K. Lellis-Dibble, J. J. Opaluch, C. Oviatt, A. Pfeiffer-Herbert, N. Rohr, L. Smith, T. Smythe, J. Swift and N. Vinhateiro. 2009. Coastal lagoons and climate change: ecological and social ramifications in U.S. Atlantic and Gulf Coast ecosystems. Ecology and Society 14: 8.
  3. Barry, S. and J. Elith. 2006. Error and uncertainty in habitat models. Journal of Applied Ecology 43: 413-423. https://doi.org/10.1111/j.1365-2664.2006.01136.x
  4. Bellard, C., C. Bertelsmeier, P. Leadley, W. Thuiller and F. Courchamp. 2012. Impacts of climate change on the future of biodiversity. Ecology Letters 15: 365-377. https://doi.org/10.1111/j.1461-0248.2011.01736.x
  5. Bird, E. C. F. 2000. Coastal Geomorphology: An Introduction. John Wiley, Chichester, 344 pp.
  6. Brown, J. L., J. R. Bennett and C. M. French. 2017. SDMtoolbox 2.0: the next generation Python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. PeerJ 5: e4095. https://doi.org/10.7717/peerj.4095
  7. Bystriakova, N., S. W. Ansell, S. J. Russell, M. Grundmann, J. C. Vogel and H. Schneider. 2014. Present, past and future of the European rock fern Asplenium fontanum: combining distribution modelling and population genetics to study the effect of climate change on geographic range and genetic diversity. Annals of Botany 113: 453-465. https://doi.org/10.1093/aob/mct274
  8. Choi, K. H., J. H. Lee, Y. K. Shin, J. Y. Park, M. H. Suh, T. B. Choi, J. H. Lee, H. C. Roh, P. M. Jung, Y. M. Kim, S. R. Han and B. H. Yu. 2009. Research on Coastal Landscape and the Conservational Strategy (2007-2009). National Institute of Environmental Research, Incheon, 297 pp. (in Korean)
  9. Choi, Y. R. 2014. Modernization, development and underdevelopment: reclamation of Korean tidal flats, 1950s-2000s. Ocean and Coastal Management 102: 426-436. https://doi.org/10.1016/j.ocecoaman.2014.09.023
  10. Costanza, R., R. D'Arge, R. de Groot, S. Farber, M. Grasso, B. Hannon, K. Limburg, S. Naeem, R. V. O'Neill, J. Paruelo, R. G. Raskin, P. Sutton and M. van den Belt. 1997. The value of the world's ecosystem services and natural capital. Nature 387: 253-260. https://doi.org/10.1038/387253a0
  11. Doody, J. P. 2013. Coastal squeeze and managed realignment in southeast England, does it tell us anything about the future? Ocean and Coastal Management 79: 34-41. https://doi.org/10.1016/j.ocecoaman.2012.05.008
  12. Fick, S. E. and R. J. Hijmans. 2017. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology 37: 4302-4315. https://doi.org/10.1002/joc.5086
  13. GBIF.org. 2019. GBIF Home Page. Retrieved Mar. 31, 2019, available from https://www.gbif.org.
  14. Gent, P. R., G. Danabasoglu, L. J. Donner, M. M. Holland, E. C. Hunke, S. R. Jayne, D. M. Lawrence, R. B. Neale, P. J. Rasch, M. Vertenstein, P. H. Worley, Z.-L. Yang and M. Zhang. 2011. The Community Climate System Model Version 4. Journal of Climate 24: 4973-4991. https://doi.org/10.1175/2011JCLI4083.1
  15. Grimm, N. B., S. H. Faeth, N. E. Golubiewski, C. L. Redman, J. Wu, X. Bai and J. M. Briggs. 2008. Global change and the ecology of cities. Science 319: 756-760. https://doi.org/10.1126/science.1150195
  16. Heo, T.-K., Y. Kim, K.-O. Boo, Y.-H. Byun and C. Cho. 2018. Future sea level projections over the seas around Korea from CMIP5 simulations. Atmosphere Korean Meteorological Society 28: 25-35. (in Korean)
  17. Hijmans, R. J. 2017. dismo: Species Distribution Modeling, R package version 1.1-4. Retrieved Mar. 31, 2019, available from http://CRAN.R-project.org/package=dismo.
  18. Hijmans, R. J. 2020. raster: Geographic Data Analysis and Modeling, R package version 3.0-12. Retrieved Mar. 31, 2019, available from http://CRAN.R-project.org/package=raster.
  19. Hijmans, R. J., S. E. Cameron, J. L. Parra, P. G. Jones and A. Jarvis. 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25: 1965-1978. https://doi.org/10.1002/joc.1276
  20. Hugo, G. 2011. Future demographic change and its interactions with migration and climate change. Global Environmental Change 21(Suppl. 1): S21-S33. https://doi.org/10.1016/j.gloenvcha.2011.09.008
  21. Intergovernmental Panel on Climate Change (IPCC). 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Intergovernmental Panel on Climate Change, Geneva, 151 pp.
  22. Jung, T. S. 2014. Change of mean sea level due to coastal development and climate change in the Western Coast of Korean Peninsula. Journal of Korean Society of Coastal and Ocean Engineers 26: 120-130. (in Korean) https://doi.org/10.9765/KSCOE.2014.26.3.120
  23. Kang, S. K. 2005. Patterns of recent sea level rise in the East/Japan Sea from satellite altimetry and in situ data. Journal of Geophysical Research 110: C07002. https://doi.org/10.1029/2004jc002565
  24. Koh, C.-H. and J. S. Khim. 2014. The Korean tidal flat of the Yellow Sea: physical setting, ecosystem and management. Ocean and Coastal Management 102: 398-414. https://doi.org/10.1016/j.ocecoaman.2014.07.008
  25. Koo, K. A., S. U. Park, W.-S. Kong, S. Hong, I. Jang and C. Seo. 2017. Potential climate change effects on tree distributions in the Korean Peninsula: understanding model and climate uncertainties. Ecological Modelling 353: 17-27. https://doi.org/10.1016/j.ecolmodel.2016.10.007
  26. Kwon, H. S., C. W. Seo and C. H. Park. 2012. Development of species distribution models and evaluation of species richness in Jirisan region. Journal of Korean Society for Geospatial Information System 20: 11-18. (in Korean) https://doi.org/10.7319/kogsis.2012.20.3.011
  27. Lee, C.-W., C.-H. Lee and B.-K. Choi. 2017. Distribution patterns and ecological characters of Paulownia coreana and P. tomentosa in Busan Metropolitan City using MaxEnt model. Journal of the Korean Institute of Traditional Landscape Architecture 35: 87-97. (in Korean) https://doi.org/10.14700/KITLA.2017.35.2.87
  28. Lee, S.-H., H. Jung and J. Choi. 2013. Projecting climate change impact on the potential distribution of endemic plants (Megaleranthis saniculifolia) in Korea. Journal of the Korea Society of Environmental Restoration Technology 15: 75-84. (in Korean) https://doi.org/10.13087/kosert.2012.15.3.075
  29. Lee, S., K.-H. Cho and W. Lee. 2016a. Prediction of potential distributions of two invasive alien plants, Paspalum distichum and Ambrosia artemisiifolia, using species distribution model in Korean Peninsula. Ecology and Resilient Infrastructure 3: 189-200. (in Korean) https://doi.org/10.17820/eri.2016.3.3.189
  30. Lee, Y. H., S. H. Hong, C. S. Na, S. I. Sohn, M. H. Kim, C. S. Kim and Y.-J. Oh. 2016b. Predicting the suitable habitat of Amaranthus viridis based on climate change scenarios by MaxEnt. Korean Journal of Environmental Biology 34: 240-245. (in Korean) https://doi.org/10.11626/KJEB.2016.34.4.240
  31. Martinez, M. L., A. Intralawan, G. Vazquez, O. Perez-Maqueo, P. Sutton and R. Landgrave. 2007. The coasts of our world: ecological, economic and social importance. Ecological Economics 63: 254-272. https://doi.org/10.1016/j.ecolecon.2006.10.022
  32. Mendoza-Gonzalez, G., M. L. Martinez, O. R. Rojas-Soto, G. Vazquez and J. B. Gallego-Fernandez. 2013. Ecological niche modeling of coastal dune plants and future potential distribution in response to climate change and sea level rise. Global Change Biology 19: 2524-2535. https://doi.org/10.1111/gcb.12236
  33. Merow, C., M. J. Smith and J. A. Silander. 2013. A practical guide to MaxEnt for modeling species' distributions: what it does, and why inputs and settings matter. Ecography 36: 1058-1069. https://doi.org/10.1111/j.1600-0587.2013.07872.x
  34. Oh, B. U., D. G. Jo, S. C. Ko, B. H. Choi, W. K. Paik, G. Y. Chung, T. M. Lee and C. G. Jang. 2010. 300 Target Plants Adaptable to Climate Change in the Korean Peninsula. Korea Forest Service, Korea National Arboretum, Pocheon, 492 pp. (in Korean)
  35. Oh, S. H. and H.-J. Kim. 2008. The plant resources of the sand dune on southern coast and Jeju Island, Korea. Korean Journal of Plant Resources 21: 374-387. (in Korean)
  36. Park, S.-J., S. J. Park and S.-W. Son. 2009. The flora of coastal sand dune area in Gyeondsangbuk-do. Korean Journal of Environment and Ecology 23: 392-410. (in Korean)
  37. Parmesan, C. and G. Yohe. 2003. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421: 37-42. https://doi.org/10.1038/nature01286
  38. Pearson, R. G. 2010. Species' distribution modeling for conservation educators and practitioners. Lessons in Conservation 3: 54-89.
  39. Peterson, A. T. 2011. Ecological niche conservatism: a time-structured review of evidence. Journal of Biogeography 38: 817-827. https://doi.org/10.1111/j.1365-2699.2010.02456.x
  40. Phillips, S. J. and M. Dudik. 2008. Modeling of species distribution with Maxent: new extensions and a comprehensive evalutation. Ecograpy 31: 161-175. https://doi.org/10.1111/j.0906-7590.2008.5203.x
  41. Pontee, N. 2013. Defining coastal squeeze: a discussion. Ocean and Coastal Management 84: 204-207. https://doi.org/10.1016/j.ocecoaman.2013.07.010
  42. Post, J. C. and C. G. Lundin. 1996. Guidelines for Integrated Coastal Zone Management. The World Bank, Washington, D.C., 28 pp.
  43. Rodriguez, J. P., L. Brotons, J. Bustamante and J. Seoane. 2007. The application of predictive modelling of species distribution to biodiversity conservation. Diversity and Distributions 13: 243-251. https://doi.org/10.1111/j.1472-4642.2007.00356.x
  44. Root, T. L., J. T. Price, K. R. Hall, S. H. Schneider, C. Rosenzweig and J. A. Pounds. 2003. Fingerprints of global warming on wild animals and plants. Nature 421: 57-60. https://doi.org/10.1038/nature01333
  45. Sawada, Y. and S. Tsuda. 2005. Thalassochory potential in 14 species of coastal plants in the warm temperate zone of Japan. Vegetation Science 22: 53-61.
  46. Schwartz, M. W., L. R. Iverson, A. M. Prasad, S. N. Matthews and R. J. O'Connor. 2006. Predicting extinctions as a result of climate change. Ecology 87: 1611-1615. https://doi.org/10.1890/0012-9658(2006)87[1611:PEAARO]2.0.CO;2
  47. Shim, H.-B., W.-B. Cho and B.-H. Choi. 2009. Distribution of halophytes in coastal salt marsh and on sand dunes in Korea. Korean Journal of Plant Taxonomy 39: 264-276. (in Korean) https://doi.org/10.11110/kjpt.2009.39.4.264
  48. Shim, H. B., K. M. Lee, W. Kim, G. H. Nam, S. Sim, B. Y. Lee, K. H. Nam, S. Shim and B. Y. Lee. 2017. Coastal Plants of Korea. National Institute of Biological Resources, Incheon, 304 pp. (in Korean)
  49. Shin, M.-S., C. Seo, M. Lee, J.-Y. Kim, J.-Y. Jeon, P. Adhikari and S.-B. Hong. 2018. Prediction of potential species richness of plants adaptable to climate change in the Korean Peninsula. Journal of Environmental Impact Assessment 27: 562-581. (in Korean) https://doi.org/10.14249/EIA.2018.27.6.562
  50. Sinclair, S. J., M. D. White and G. R. Newell. 2010. How useful are species distribution models for managing biodiversity under future climates? Ecology and Society 15: 8.
  51. Small, C. and R. J. Nicholls. 2003. A global analysis of human settlement in coastal zones. Journal of Coastal Research 19: 584-599.
  52. Sung, C. Y., H.-T. Shin, S.-H. Choi and H.-S. Song. 2018. Predicting potential habitat for Hanabusaya asiatica in the North and South Korean border region using MaxEnt. Korean Journal of Environment and Ecology 32: 469-477. (in Korean) https://doi.org/10.13047/KJEE.2018.32.5.469
  53. Vega, G. C., L. R. Pertierra and M. A. Olalla-Tarraga. 2018. MERRAclim, a high-resolution global dataset of remotely sensed bioclimatic variables for ecological modelling. Scientific Data 4: 170078. https://doi.org/10.1038/sdata.2017.78
  54. Wang, T., E. M. Campbell, G. A. O'Neill and S. N. Aitken. 2012. Projecting future distributions of ecosystem climate niches: uncertainties and management applications. Forest Ecology and Management 279: 128-140. https://doi.org/10.1016/j.foreco.2012.05.034
  55. Warren, D. L. and S. N. Seifert. 2011. Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecological Applications 21: 335-342. https://doi.org/10.1890/10-1171.1
  56. Watanabe, S., T. Hajima, K. Sudo, T. Nagashima, T. Takemura, H. Okajima, T. Nozawa, H. Kawase, M. Abe, T. Yokohata, T. Ise, H. Sato, E. Kato, K. Takata, S. Emori and M. Kawamiya. 2011. MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments. Geoscientific Model Development 4: 845-872. https://doi.org/10.5194/gmd-4-845-2011
  57. Wiens, J. A., D. Stralberg, D. Jongsomjit, C. A. Howell and M. A. Snyder. 2009. Niches, models, and climate change: assessing the assumptions and uncertainties. Proceedings of the National Academy of Sciences of the United States of America 106(Suppl. 2): 19729-19736. https://doi.org/10.1073/pnas.0901639106
  58. Woodward, F. I. and B. G. Williams. 1987. Climate and plant distribution at global and local scales. Vegetatio 69: 189-197. https://doi.org/10.1007/BF00038700
  59. Woodward, F. I., M. R. Lomas and C. K. Kelly. 2004. Global climate and the distribution of plant biomes. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences 359: 1465-1476. https://doi.org/10.1098/rstb.2004.1525
  60. Yoon, J. J. and S. I. Kim. 2012. Analysis of long period sea level variation on tidal station around the Korea Peninsula. Journal of Korean Society of Hazard Mitigation 12: 299-305. (in Korean) https://doi.org/10.9798/KOSHAM.2012.12.3.299

Cited by

  1. The complete chloroplast genome sequence of coastal psammophyte, Ixeris repens (Asteraceae, subtribe Crepidinae), in Korea vol.6, pp.3, 2020, https://doi.org/10.1080/23802359.2021.1899076