DOI QR코드

DOI QR Code

Impact Analysis of Water Blending to Reverse Osmosis Desalination Process

원수 블렌딩이 해수담수화 역삼투 공정 성능에 미치는 영향

  • Kim, Jihye (Water Works Research Center, K-water Research Institute) ;
  • Park, Hyung Jin (Water Works Research Center, K-water Research Institute) ;
  • Lee, Kyung-Hyuk (Water Works Research Center, K-water Research Institute) ;
  • Kwon, Boungsu (Water Works Research Center, K-water Research Institute) ;
  • Kwon, Soonbuhm (Water Works Research Center, K-water Research Institute) ;
  • Lim, Jae-Lim (Water Works Research Center, K-water Research Institute)
  • 김지혜 (K-water 연구원 물이용연구소) ;
  • 박형진 (K-water 연구원 물이용연구소) ;
  • 이경혁 (K-water 연구원 물이용연구소) ;
  • 권병수 (K-water 연구원 물이용연구소) ;
  • 권순범 (K-water 연구원 물이용연구소) ;
  • 임재림 (K-water 연구원 물이용연구소)
  • Received : 2020.04.13
  • Accepted : 2020.06.18
  • Published : 2020.06.30

Abstract

The utilization of multiple water sources becomes important due to the master plan for development of water supply released by Ministry of Environment, Korea in 2018. In this study, therefore, the analysis of comprehensive effect in blending applicable water sources in Daesan where 100,000 ㎥/d seawater desalination plant will be constructed for industrial use was performed. The increase in mixing ratio of other water sources with seawater reduced salinity up to 50%, but negatively impacted the turbid and organic matter. Lab-scale reverse osmosis performance test also found that membrane fouling was exacerbated in blended water condition. The simulation results of reverse osmosis indicated 39% energy saving on average is expected at the one-to-one blending ratio, however, long-term performance test at the pilot-scale plant is highly required to evaluate the inclusive impact of mixing seawater and other water sources.

2018년 환경부에서 발표된 수도정비기본계획에 따라 다양한 수자원 활용의 중요성이 증가하고 있으며, 여러 수원을 혼합하여 원수 또는 생산수로 활용하는 워터 블렌딩 방식은 미국, 호주를 비롯한 여러 나라에서 시도되고 있다. 본 연구에서는 공업용수 공급 목적으로 100,000 ㎥/일 규모 해수담수화 사업이 추진되고 있는 충남 대산 지역을 대상으로, 해수와 호소수, 침전수, 폐수 방류수 등 타 수원을 블렌딩할 때 수종 및 혼합비율에 따른 영향을 분석하였다. 타 수원 혼합비율 10~50% 조건에서 혼합수 염분농도는 약 50%까지 감소하였지만, 탁질 및 유기물 농도는 1.6~2.0배 수준으로 증가하는 것을 확인하였다. 실험실 규모 역삼투 공정 성능평가 결과, 해수의 단독활용 대비 원수 혼합 시 막오염 경향이 증가하였으며 혼합비율 10~50%에서 평균 4.1배의 플럭스 저감률을 나타내었다. 성능모사를 통한 역삼투 공정 성능분석에 따르면 혼합비율 50% 조건에서 역삼투 공정 에너지 사용량이 평균 39% 절감될 수 있을 것으로 기대되나, 운영비용 등 혼합수 활용에 대한 전반적인 영향분석을 위해서는 모형플랜트 규모에서 장기간 성능평가가 필요하다.

Keywords

References

  1. P. Doll, "Impact of climate change and variability on irrigation requirements: A global perspective", Clim. Change, 54, 269 (2002). https://doi.org/10.1023/A:1016124032231
  2. J. Alcamo, P. Doll, T. Hernichs, F. Kaspar, B. Lehner, T. Rosch, and S. Siebert, "Global estimates of water withdrawals and availability under current and future 'business-as-usual' conditions", Hydrol. Sci. J., 48, 339 (2003). https://doi.org/10.1623/hysj.48.3.339.45278
  3. J. Schewe, J. Heinke, D. Gerten, I. Haddeland, N. W. Arnell, D. B. Clark, R. Dankers, S. Eisner, B. M. Fekete, F. J. Colon-Gonzalez, S. N. Gosling, H. Kim, X. Liu, Y. Masaki, F. T. Portmann, Y. Satoh, T. Stacke, Q. Tang, Y. Wada, D. Wisser, T. Albrecht, K. Frieler, F. Piontek, L. Warszawski, and P. Kabat, "Multimodel assessment of water scarcity under climate change", PNAS, 111, 3245 (2014). https://doi.org/10.1073/pnas.1222460110
  4. K. S. Jeong, D. K. Kim, and G. J. Joo, "Delayed influence of dam storage and discharge on the determination of seasonal proliferations of Microcystis aeruginosa and Stephanodiscus hantzschii in a regulated river system of the lower Nakdong River (South Korea)", Water Research, 41, 1269 (2007). https://doi.org/10.1016/j.watres.2006.11.054
  5. S. Lee and S. U. Kim, "Quantification of hydrological responses due to climate change and human activities over various time scales in South Korea", Water, 9(1), 34 (2017). https://doi.org/10.3390/w9010034
  6. M. K. Wittholz, B. K. O'Neill, C. B. Colby, and D. Lewis, "Estimating the cost of desalination plants using a cost database", Desalination, 229, 10 (2008). https://doi.org/10.1016/j.desal.2007.07.023
  7. Global Water Intelligence, "Desalination Markets 2016" (2015).
  8. N. S. Park, S. S. Kim, S. H. Chae, and S. Kim, "The effect of fluctuation in flow rate on the performance of conventional and membrane water treatment for a smart water grid", Desalin. Water Treat., 47, 17 (2012). https://doi.org/10.1080/19443994.2012.696390
  9. S. Kim, F. L. Lim, J. Y. Park, and J. O. Kim, "Effect of flux fluctuation on the fouling in membrane water treatment system for smart water grid", Desalin. Water Treat., 52, 1028 (2014). https://doi.org/10.1080/19443994.2013.826775
  10. W. A. Lovins III, S. J. Duranceau, R. M. Powell, and J. Richard Voorhees, "Experiences with blending multiple source waters in a common water distribution system", Florida Water Resources Journal, March, 31 (2005).
  11. W. Xiao, "Effect of source water blending on copper release in pipe distribution system: Thermodynamic and empirical models", Ph.D. Dissertation, University of Central Florida Orlando, Florida (2004).
  12. H. K. Shon and A. Chanan, "Water management in sydney: Challenges, progress and the future", Smart Water Grid International Conference, Incheon, Korea, 177 (2014).
  13. H. Lee, H. Park, D. S. Woo, and S. Kim, "Design for seawater reverse osmosis plant using water blending in smart water grid", J. Korean Soc. Water Wastewater, 29(1), 89 (2015). https://doi.org/10.11001/jksww.2015.29.1.089
  14. Ministry of Environment, "Guidelines for establishing a basic plan for water supply maintenance" (2018).
  15. J. S. Choi, T. M. Hwang, S. Lee, and S. Hong, "A systematic approach to determinie the fouling index for a RO/NF membrane process", Desalination, 238, 117 (2009). https://doi.org/10.1016/j.desal.2008.01.042
  16. K-water, "Feasibility study and basic planning for the seawater desalination project in Daesan coastal industrial complex" (2019).
  17. J. Kim, K. H. Lee, and J. L. Lim, "Comprehensive analysis of major factors associated with the performance of reverse osmosis desalination plant for energy-saving", Membr. J., 29(6), 314 (2019). https://doi.org/10.14579/MEMBRANE_JOURNAL.2019.29.6.314
  18. Standard SWRO Membrane Specification, https://www.toraywater.com/products/ro/ro_003.html.
  19. LG Chem Seawater Reverse Osmosis Membranes Specification, https://www.appliedmembranes.com/lg-chem-seawater-ro-membranes-swro.html.
  20. N. Voutchkov, Desalination Engineering: Planning and Design, McGraw Hill, 41, (2013).
  21. S. M. Rao, "Reverse osmosis", Resonance, 12, 37 (2007). https://doi.org/10.1007/s12045-007-0048-8
  22. K. Loganathan, P. C. Ayala, and M. G. E. Din, "Pilot-scale study on the reverse osmosis treatment of oil sands tailings pond water: Impact of pretreatment on process performance", Desalination, 360, 52 (2015). https://doi.org/10.1016/j.desal.2014.12.045
  23. M. M. Shamel and O. T. Chung, "Drinking water from desalination of seawater: Optimization of reverse osmosis system operating parameters", J. Eng. Sci. Technol., 1(2), 203 (2006).