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Abstract

We propose appropriate criteria for obtaining fish species data and number of learning data, as well as for selecting the most

appropriate convolutional neural network (CNN) to efficiently classify exotic invasive fish species for their extermination. The

acquisition of large amounts of fish species data for CNN learning is subject to several constraints. To solve these problems, we

acquired a large number of fish images for various fish species in a laboratory environment, rather than a natural environment.

We then converted the obtained fish images into fish images acquired in different natural environments through simple image

synthesis to obtain the image data of the fish species. We used the images of largemouth bass and bluegill captured at a pond as

test data to confirm the effectiveness of the proposed method. In addition, to classify the exotic invasive fish species accurately,

we evaluated the trained CNNs in terms of classification performance, processing time, and the number of data; consequently,

we proposed a method to select the most effective CNN. 

Index Terms: Convolutional neural network, Data acquisition, Efficient classification, Exotic invasive fish species

I. INTRODUCTION

The Convention on Biological Diversity (CBD), which

came into force in 1993, aims at a broad international agree-

ment to address the conservation of biodiversity on the

planet, the sustainable use of its components, and the fair

and equitable sharing of benefits arising out of the utilization

of genetic resources [1]. Several species are being monitored

in every country for fulfilling this purpose. In particular, the

10th Conference of the Parties to the Convention on Biologi-

cal Diversity announced the prioritization of the “elimination

of exotic invasive species” worldwide [1, 2]. In South Korea,

the largemouth bass and bluegill species cause ecosystem

disturbance in domestic waters. They are known to be the

most important factors in reducing the population of native

species in domestic freshwater. Therefore, an efficient and

reliable system needs to be developed for the elimination of

these exotic invasive species.

Studies conducted on fish recognition so far have mainly

been limited to the ground or restricted environments. How-

ever, despite the high demand for underwater object recogni-

tion, studies on data acquisition and automatic data processing

have been lacking, due to the limitations of underwater envi-

ronments [3]. Lee et al. [4] used fish contour matching to

recognize fish in a fish tank, whereas Strachan et al. [5-7]

used color and shape to recognize fish on a conveyor belt

with 92% accuracy [7]. Recently, French et al. [8] have stud-

ied a system that simply recognizes and counts fish using a

convolutional neural network (CNN). Qin et al. [3] used a

CNN to classify fish species in the ocean. The fish images in

the water have been designed with low resolution, due to the

large amount of data obtained using a video system, and the
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quality of the fish images is low, due to the extreme condi-

tions in the water [9]. Therefore, it is difficult to obtain con-

stant proportional data of several fish species from video

images captured underwater, and the images require prepro-

cessing to remove the background to improve the accuracy

of the CNN. Thus, this study aims to design a system that is

robust to the surrounding environment for devices classify-

ing fish species in natural ecosystems, such as inland water

and rivers. Accordingly, we consider the following problems.

The first problem is the acquisition of the fish species data.

Several studies performed performance evaluation using

small datasets under limited constraints. This is because

there are several limitations to obtaining the images of multi-

ple species in a wide range of natural environments. There-

fore, a system constructed under limited conditions cannot

be used for the performance evaluation of fish images

obtained in a wide range of natural environments. Second,

the captured fish images differ owing to the visual effects of

the depth and turbidity of the water [3]. In a natural environ-

ment, the light intensity changes frequently due to water and

sunlight, and the field of view is limited according to the

depth and turbidity of the water. Therefore, obtaining a large

number of fish images in a natural environment is difficult.

Third, no studies or data exist on the number of fish images

and image clarity, to design a fish classification system. To

solve these problems, we use our previously proposed

method to construct a large number of fish images in differ-

ent natural environments [10], and we verify the perfor-

mance against numerous experimental fish images.

A learning system accumulates data from experience and

learns by itself to improve its performance. Machine learning

and deep learning have attracted increasing interest for sev-

eral years, and they are being applied in various fields. Goo-

gle Assistant, Apple Siri, and IBM Watson use machine

learning to acquire knowledge from data, and to solve real

problems [11]. In particular, deep learning is a method of

machine learning in which images can be classified and

learned directly into a network model, where the computer

learns directly from the data [12-14]. Among them, CNN,

which was proposed by LeCun [12] in the late 1990s and

which mimics the visual processing process of humans and

animals, has been successfully applied to the field of image

recognition [12-19].

In this paper, we present appropriate criteria for acquiring

the fish species data, the classification performance by tur-

bidity, and the number of learning data, and for selecting the

most efficient CNN for the accurate classification of exotic

invasive species for their elimination. The raw data of the

fish images captured in a laboratory were composed of 5,000

[images/fish species] to overcome the difficulty of obtaining

a large number of actual fish species images in a natural

environment. These image data were converted into an

image dataset similar to the images captured in a natural

environment, which was then used in experiments. We also

confirmed the effectiveness of the proposed method by using

1,000 [images/fish species] of largemouth bass and bluegill

captured at a pond for several months. The CNNs evaluated

in this study were AlexNet, the recently used VGGNet

(VGG16, VGG19), and GoogLeNet [16-19]. We present a

method to choose the most efficient CNN for the classifica-

tion of exotic invasive species.

II. CONVOLUTIONAL NEURAL NETWORK

CNN, proposed by LeCun [12], is a deep learning algo-

rithm that exhibits the best performance in the field of image

recognition. It can perform recognition even when the size

and position of objects are changed, by mimicking the visual

processing process of an animal [12-14]. CNN is capable of

re-learning the network to be applied to new recognition

work through transfer learning, thereby enabling high accu-

racy and quick learning [15-19]. Fig. 1 shows the general

hierarchical structure of CNN, which can be divided into a

feature extraction layer and classification layer [12-14]. The

feature extraction layer can be divided into a convolution

layer, rectified linear unit (ReLU) layer, and pooling layer.

The convolution layer activates image features by using a

convolution filter on the input image. The ReLU layer elimi-

nates the vanishing gradient of the network, which allows

the network to learn quickly. The pooling layer performs a

nonlinear downsampling of the image to simplify the output,

and to reduce the number of network parameters. In addi-

tion, the classification layer consists of nodes connected

Fig. 1. CNN system
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after passing through the feature detection layer. It is gener-

ally composed of a fully connected layer, and it provides the

number of classifications that can be predicted by the net-

work as a K-dimensional vector [12-14]. In this study, we

evaluated the performance after transfer learning using Alex-

Net, VGGNet (VGG16, VGG19), and GoogLeNet.

III. DATASET CONSTRUCTION

The datasets are composed of the basic dataset, data group

I, data group II, and dataset Z. The basic dataset consists of

the raw images captured in the laboratory. Data group I and

Data group II consist of the learning data and the test data

for the CNNs, respectively. Dataset Z is composed only of

the test data for the performance evaluation of the CNNs.

A. Basic Dataset

The learning, validation, and test data of the CNNs for the

classification of fish species are difficult to secure, because

acquiring data using Internet images or video images

requires a considerable amount of time and numerous copy-

right permissions [15]. This is because there are several lim-

itations to obtaining a large number of fish images for

different species in a wide range of natural environments. In

a natural environment, the light intensity changes frequently

due to water and sunlight, and the field of view is limited

according to the depth and turbidity of the water. Therefore,

obtaining a large number of fish images in a natural environ-

ment is difficult. Fig. 2(a) is an example of largemouth bass

images captured at the pond for several months. Distinguish-

ing individual fish species by the influence of sunlight, illu-

minance, green algae, and moss is difficult. Therefore, an

effective method is required to acquire a large number of

fish species images in different natural environments, to

solve these problems. 

To acquire a large number of fish images for the same fish

species, we recorded the videos of fish of specific species in

the laboratory environment and used the captured video

images as the basic data [15]. Seven individual fish species

were tested for the fish classification. Two species were

largemouth bass and bluegill, which are exotic invasive spe-

cies, whereas the other five species were common carp, cru-

cian carp, catfish, mandarin fish, and skin carp, which reside

in rivers and inland waters, and are similar in size or shape

to the exotic invasive species. We used 5,000 [images/fish

species] data from the videos of the seven individual fish

species as the basic data. Fig. 2(b) shows an example of the

captured fish images.

B. Data Group I

The image of a largemouth bass shown in Fig. 2(a) cap-

tured at the pond is different from the image shown in Fig.

2(b) captured in the laboratory, due to the effects of sunlight,

illumination, green algae, and moss. Eight underwater

images were selected for realizing fish images close to the

natural environment. The eight underwater images consist of

deep underwater images and images of green algae and

muddy water often observed in streams and inland water

[10]. We created Data group I through a random synthesis of

Fig. 2. Images of largemouth bass captured in a natural environment, fish images of basic data captured in a laboratory, and underwater images
https://doi.org/10.6109/jicce.2020.18.2.106 108
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the selected eight underwater images and 5,000 [images/fish

species] fish images. Data group I consists of eight datasets

named Datasets A–H. 

To realize an image in a natural environment, which

changes according to the change in luminous intensity due to

sunlight, water depth, and turbidity, we created Datasets A–

H, by mixing randomly selected underwater images and fish

images in different ratios.

The image composition can be expressed simply as a lin-

ear combination of two input images pixels as in (1): 

ImageComp = (1 − x) × Image1 + x × Image2, (1)

where x s.t. 0 ≤ x ≤ 1 is the image composition ratio, Image1
and Image2 are the two image pixel values to be synthesized,

and ImageComp is the synthesized image pixel value.

Fig. 2(c) shows the eight underwater images used in this

study. Table 1 shows the eight Datasets A–H and the propor-

tions of the synthesized images.

Fig. 3 shows an example of images from Datasets A–H

obtained by synthesizing the muddy water image of Fig. 2(c)

for a bluegill. As evident from Fig. 3, it is possible to realize

a fish image similar to that in a natural environment, which

changes according to the change in luminous intensity due to

sunlight, and the depth and turbidity of the water. In particu-

lar, Datasets E–H are highly turbid, so that it is difficult for

laypersons or even fish specialists to distinguish fish species.

C. Data Group II

Existing CNN studies have not considered the amount of

data required for learning, validation, and testing. In general,

the learning of a CNN is greatly affected by the number of

data depending on the number of classification categories,

the similarity of classification images, the size of images,

and the sharpness of images. Therefore, the classification

performance is known to improve as the number of images

increases, but there are no studies on the appropriate number

of data for learning.

The ImageNet Large Scale Visual Recognition Challenge

(ILSVRC), an image contest held from 2010 to 2017, used

10,000 [image/class] learning data for 1,000 classifications

[20]. The training data of the Modified National Institute of

Standards and Technology (MNIST) database employed as a

benchmark test for machine learning and deep learning used

6,000 [images/classes] [21], whereas the image training data

of CIFAR-10 and CIFAR-100 built by the Canadian Institute

for Advanced Research (CIFAR) [22] used 5,000 [images/

classes] and 500 [images/classes], respectively. Therefore,

we attempt to evaluate experimentally the number of fish

images required to classify fish species in water.

Data group II consists of Datasets L–P constructed with

learning, validation, and test data in a certain ratio from

Datasets A–H. However, Datasets D–H randomly contain

fish images that are difficult for humans to recognize.

Assuming that the fish images to be classified are generally

in their natural environment, only Datasets A–C are suffi-

cient. Therefore, it is practical to construct datasets of fish

images newly from the Datasets A–C at random. Table 2

shows the number of data in the newly constructed Datasets

Table 1. Data group I

Dataset Random underwater images (%) Fish images (%)

Dataset A 30 70

Dataset B 50 50

Dataset C 70 30

Dataset D 80 20

Dataset E 85 15

Dataset F 90 10

Dataset G 92.5 7.5

Dataset H 95 5

Fig. 3. Synthesis of muddy water image. (A)–(H) Datasets A–H.
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L–P and Q–U. Table 2 shows that the numbers of learning

and validation data were selected differently, and the number

of test data was maintained the same to ensure the reliability

of the experiment, and to evaluate the classification perfor-

mance. Data group II was created to evaluate the number of

fish images and the effect of the turbidity of the synthesized

images.

D. Dataset Z

The synthesized fish images are images that are very simi-

lar to, or that have been severely synthesized to be similar to

those captured in their natural environment. We believe that

these images could be replaced by fish images captured in a

wide range of natural environments, as in Fig. 2(a). There-

fore, the performances of the CNNs learned with Datasets

L–P and Q–U were evaluated using Dataset Z as the test

data.

Dataset Z was created by selecting 1,000 [images/fish spe-

cies] of largemouth bass and bluegill captured at the pond

for several months. The purpose of this study is to classify

the exotic invasive species living in rivers and inland waters,

and hence, Dataset Z is used as the test dataset of the exotic

invasive species in the natural environment. Therefore, this

dataset is used for verifying the acquisition of the data of

several species and the number of learning data, and the

selection of the most efficient CNN.

IV. DISCUSSION AND CONCLUSIONS

The images of the fish captured in the laboratory environ-

ment were synthesized to approximate the images captured

in the natural environment, and were then used to construct

Data group I. Furthermore, Data group II was constructed to

select proper data for the training of the CNNs. We experi-

mentally evaluated the performances of various CNNS such

as AlexNet, which has a simple structure and high perfor-

mance, VGGNet (VGG16, VGG19), and GoogLeNet. Each

CNN attempts to reduce the learning times using the transfer

learning provided by MATLAB (MathWorks). It is also

important to consider the learning and computation times

when CNNs are applied to the detection systems for exotic

invasive species in rivers or inland water.

The optimization method used by each CNN was Adam

[23], with the initial learning rate set to 1.0 × e−4. The size of

the mini-batch was adjusted according to the performance of

each CNN. Intel i9-7900 3.30 GHz CPU and four NVIDIA

GeForce GTX1080Ti were the hardware devices used.

A. Experimental Results and Analysis by Data Group I

Data group I for learning, validation, and testing consisted

of 5,000 [images/fish species] images. First, 20% of the total

data were selected as the test data, and 70% and 30% of the

remaining data were selected as the learning and validation

data, respectively.

For training AlexNet using Dataset D from Data group I,

the mini-batch size was 1,024 and the total number of learn-

ing data was 450; hence, 23.56 epochs were performed.

After learning, the performance of AlexNet showed a high

accuracy of 98.33% for 7,000 (1,000 [images/fish species])

test images.

Table 3 shows the mini-batch size, the processing time for

one image, and the classification accuracy for the four CNNs

with Data group I. The processing time for one image and

the accuracy of classification for developing a classification

system are equally important factors for the elimination of

exotic invasive species. If the fish species classification sys-

tem is installed in a natural environment, such as a river or

inland water, rather than a laboratory environment, a short

processing time is necessary. The processing time of Alex-

Net is approximately 4.3 times, 11.1 times, and 11.6 times

shorter than that of GoogLeNet, VGG16, and VGG19,

respectively. AlexNet is not deeper than the other CNNs,

which indicates that the processing time is shorter. This is an

advantage of the application of AlexNet to a fish species

classification system.

Fig. 4 plots the classification performances. For Datasets

A–F, the CNNs showed a classification accuracy of more

than 95%, and Datasets G–H showed a classification accu-

racy of more than 85%. CNNs are very robust to noise. In

Table 2. Data group II

Datasets 
No. of 

training data

No. of 

validation data

No. of 

test data

Datasets L, Q 2,800 1,200 1,000

Datasets M, R 2,100 900 1,000

Datasets N, S 1,400 600 1,000

Datasets O, T 700 300 1,000

Datasets P, U 350 150 1,000

Table 3. Classification performance of CNNs using test data in Data group I

CNN AlexNet GoogLeNet VGG16 VGG19

Mini batch 1,024 512 256 200

Processing time for one image 1.234e−2 5.347e−2 1.375e−2 1.430e−2

Accuracy of Dataset A (%) 99.63 99.93 99.90 99.64

Accuracy of Dataset B (%) 99.46 99.90 99.79 99.74

Accuracy of Dataset C (%) 99.30 99.61 99.31 99.31

Accuracy of Dataset D (%) 98.33 98.36 99.16 98.70

Accuracy of Dataset E (%) 97.63 97.74 98.70 98.50

Accuracy of Dataset F (%) 95.70 95.01 98.13 97.41

Accuracy of Dataset G (%) 90.90 91.29 95.73 94.33

Accuracy of Dataset H (%) 88.30 85.56 92.70 87.31
https://doi.org/10.6109/jicce.2020.18.2.106 110
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particular, Datasets D–H are very likely to be misrecognized

by humans, because the turbidity of images is very high.

Overall, the recognition rate achieved by CNNs was better

than that achieved by humans. Even though AlexNet is not

as deep as the other CNNs, its performance is excellent. This

indicates that a small network is more useful, because the

number of species to be classified is small.

Through the performance evaluation for Data group I, we

have confirmed that CNNs show excellent performance in

learning and classifying, even if the images change depend-

ing on the brightness and the depth and turbidity of the

water, as in the natural environment.

B. Experimental Results and Analysis by Data Group II

The previously designed CNNs showed excellent classifi-

cation performances of the fish species for Data group I,

including images with a wide range of natural environments.

However, the number of data required for CNNs to classify

fish species is unknown. Considerable amounts of time and

effort are required to acquire images of fish in diverse natu-

ral environments. In this study, we attempt to evaluate the

proper number of image data required for designing a classi-

fication system for fish species using CNNs. Table 4 shows

the classification performance results of Data group II, and

Fig. 5 graphically shows the classification performances.

The results of the performance evaluation of Data group II

confirmed that the greater the number of learning data, the

higher is the classification performance. VGG16 and VGG19

showed better performance than the other CNNs when the

number of learning data was large; however, as the number

of learning data decreased, their performance was extremely

degraded. This is because VGG16 and VGG19, which have

more parameters than those of AlexNet and GoogLeNet, are

difficult to train. Therefore, one of the reasons for their per-

formance degradation is the lack of learning data.

Fig. 5(a) shows that, if the number of fish species to be

classified is small, and a classification accuracy of more than

90% is required, the number of learning data should be set to

more than that of Dataset M among Datasets L–P. If the

Table 4. Classification performance of CNNs using test data in Data group

II

CNN AlexNet GoogLeNet VGG16 VGG19

Accuracy of Dataset L (%) 93.10 93.03 96.11 96.11

Accuracy of Dataset M (%) 90.17 91.49 95.76 95.30

Accuracy of Dataset N (%) 86.76 87.83 92.19 91.23

Accuracy of Dataset O (%) 77.50 80.00 77.36 76.87

Accuracy of Dataset P (%) 71.01 75.84 72.93 68.53

Accuracy of Dataset Q (%) 99.47 99.66 99.76 99.57

Accuracy of Dataset R (%) 98.98 98.07 98.92 98.49

Accuracy of Dataset S (%) 95.90 97.64 98.03 97.56

Accuracy of Dataset T (%) 91.94 92.31 89.59 87.47

Accuracy of Dataset U (%) 85.69 86.61 83.69 76.10

Fig. 4. Classification accuracy of CNNs using Data group I

Fig. 5. Classification accuracy of CNNs using Data group II (a) Datasets L–

P and (b) Datasets Q–U.
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required classification accuracy is 85% or more, the number

of learning data can be set to approximately that of Dataset

N. Thus, tens of thousands of image data are not required,

because there are only a few species to be classified. If the

number of fish species to be classified is large, the number

of fish image data will increase as well. 

Datasets L–P randomly contain fish images that are diffi-

cult for people to recognize. Therefore, we performed the

same experiment using Datasets Q–U, which are assumed to

be in a natural environment that humans can recognize with

100% accuracy. In Fig. 5(b), the overall data trend is similar

to that of Fig. 5(a), but the classification performance is

greatly improved. In particular, AlexNet and GoogLeNet

showed a classification accuracy of over 90% for Dataset T.

When the number of fish species to be classified is small,

even with a small number of learning data, AlexNet and

GoogLeNet, which have a shallow network or small parame-

ters, are efficient.

The number of learning data can be expressed in an expo-

nential function form using the classification accuracy of

CNNs with Data group II as shown in Fig. 6. The number of

learning data increases exponentially with the classification

accuracy. Therefore, the number of learning data is affected

by the number of fish species to be classified, classification

accuracy, and data reliability. The fish species classification

system requires the learning data of 1,500 [images/fish spe-

cies] for Datasets L–P, and 700 [images/fish species] for

Datasets Q–U. Therefore, if the data recognition reliability

of Datasets Q–U is assumed to be 100% and the required

classification accuracy is 90% or more, it is appropriate to

set the number of learning data to approximately 700

[images/fish species], which is 100 times the number of fish

species to be classified. To obtain a fish species classifica-

tion accuracy of 95%, approximately 1,170 [images/fish spe-

cies] are required, which is 167 times the number of fish

species to be classified. Assuming that the Datasets D–H are

difficult for humans to recognize, the data recognition reli-

ability of Datasets Q–U is 37.5% from the ratio of Datasets

A–H. Therefore, to obtain a classification accuracy of more

than 90% and 95% for Datasets L–P, the number of learning

data can be estimated as 1,867 and 3,120 [images/fish spe-

cies], respectively. These numbers are inversely proportional

to the data recognition reliability. These results are similar to

the results shown in Fig. 6. 

C. Experimental Results and Analysis by Dataset Z

Dataset Z consists of 1,000 [images/fish species] of large-

mouth bass and bluegill captured in the pond over several

months. This dataset was used as test data for the performance

evaluation of the CNNs. The learning of CNNs requires a

large number of fish images captured directly from a natural

environment, but obtaining such images involves several diffi-

culties. To solve these problems, we attempt to replace the fish

images captured in a natural environment by CNN learning

with the fish images synthesized in a laboratory, such as Data-

sets L–U. We will discuss the number of fish images required

for learning.

Table 5 shows the classification performance of the CNNs

for Dataset Z, and Fig. 7 graphically shows the classification

performances. The results of the performance evaluation of

the CNNs showed a similar trend to the experimental results

for Data group II. This suggests that CNN learning can be

achieved even with the synthesized fish images, rather than

the images captured directly from the natural environment.

The performances of AlexNet and GoogLeNet are generally

better than those of VGG16 and VGG19. If the number of

species to be classified is small, as in this study, smaller net-

works are more useful. The CNNs learned with Datasets O,

P, T, and U show poorer performances compared with the

CNNs learned with Datasets L–N and Q–S. This can lead to

over-fitting when training the CNN with fewer learning data,

which yields an incorrect result for the untrained image. In

this study, the classification accuracy was over 80% when at

least 2,000 [image/ fish species] (learning: 1,400, validation:

600) data were used for CNN learning. The CNNs learned

Fig. 6. Classification accuracy of CNNs using Data group II (a) Datasets L–

P, and (b) Datasets Q–U.

Table 5. Classification performance of CNNs using test data in Dataset Z

CNN AlexNet GoogLeNet VGG16 VGG19

Accuracy of Dataset L (%) 92.85 94.85 83.05 87.75

Accuracy of Dataset M (%) 92.35 83.65 86.80 84.50

Accuracy of Dataset N (%) 94.45 92.60 87.10 84.10

Accuracy of Dataset O (%) 72.65 84.10 52.35 70.05

Accuracy of Dataset P (%) 45.10 58.25 39.90 47.25

Accuracy of Dataset Q (%) 91.05 97.65 94.10 89.70

Accuracy of Dataset R (%) 87.65 98.35 87.05 85.60

Accuracy of Dataset S (%) 88.75 96.40 85.50 96.00

Accuracy of Dataset T (%) 83.50 94.20 62.95 68.10

Accuracy of Dataset U (%) 51.50 48.70 49.35 48.75
https://doi.org/10.6109/jicce.2020.18.2.106 112



Efficient Data Acquisition and CNN Design for Fish Species Classification in Inland Waters
with Datasets Q–U exhibit a better overall performance than

those learned with Datasets L–P. Dataset Z used as the test

data consists of images captured in a natural environment

that can be recognized by humans, as shown in Fig. 2(a), so

that the CNNs trained with Datasets Q–U showed a better

performance. Datasets L–P, which contain random images of

fish that are difficult to recognize, rather adversely affected

the classification performance of the CNNs.

Therefore, we have drawn the following conclusions from

this study:

1) As the number of learning data for the CNNs increases,

their classification accuracy increases.

2) The smaller the number of objects to be classified, the

better is the performance of a small CNN in terms of

learning time, processing time, and performance.

3) The learning data should be composed of data that are

at least lower than the recognition reliability of the test

data, and the CNN should be trained.

4) The proposed data acquisition method solves the diffi-

culty of acquiring a large number of data in a natural

environment, and its effectiveness is confirmed via

experiments.

V. CONCLUSIONS

In this paper, we propose appropriate criteria for obtaining

fish species data and the number of learning data, and for

selecting the most appropriate CNN for the efficient classifi-

cation of exotic invasive fish species for their extermination.

The acquisition of fish species data for learning CNNs has

several limitations, due to the changes in luminous intensity

according to sunlight, and the depth and turbidity of water.

To solve these problems, a large number of fish images are

acquired for various fish species in a laboratory environ-

ment, and the obtained fish images are converted into fish

images obtained in different natural environments through

simple image synthesis. Data group I consisted of images

from a wide range of natural environments, whereas Data

group II was constructed by changing the number of data in

Data group I.

The experiments confirmed that the classification perfor-

mances of the four CNNs were excellent in Data group I,

which included various environmental conditions. In particu-

lar, AlexNet showed the shortest processing time, and it was

confirmed to be suitable for developing systems with a small

number of objects to be classified. In experiments for select-

ing the number of learning data using Data group II, if the

number of fish species to be classified is small, AlexNet,

which is a shallow network, and GoogLeNet are more effec-

tive. In addition, we confirmed that the number of learning

data is affected by the number of classifications, classifica-

tion accuracy, and data recognition reliability.

Therefore, the data acquisition method via image synthesis

was presented to solve the difficulty of acquiring a large

number of data in a natural environment, and its effective-

ness was confirmed via experiments.
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