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Introduction

Finite element analysis method has been adopted as 
a useful tool to analyze the biomechanical character-
istics of  oral system. This method provides in-depth, 
three-dimensional pattern of  the stress distribution 
which would have been otherwise difficult to imple-
ment and observe.1-4 As such, the stress generated by 
occlusal load in various experimental modalities has 

been studied. However, some studies5-13 have pointed 
out that occlusion may have significant effect on the 
result of  finite element analysis which means that the 
three-dimensional location and direction of  the oc-
clusion itself  could be a variable that can change the 
stress distribution.

Benazzi et al.7 compared the stress distribution 
of  a premolar under different loading conditions. 
Arbitrary occlusal points on buccal cusp tip, center 
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point of  mesio-distal groove, and buccal cusp tip 
with 45-degree angle from the tooth axis were given 
to each three identical premolar model. The occlusal 
area from the early time frame during mastication 
that was projected by software was chosen and given 
to another identical premolar model. In addition, the 
occlusal area during maximum intercuspation was 
used. The result of  those 5 models showed differ-
ent stress distribution patterns. The authors stated 
that the loading direction and position can affect the 
result of  finite element analysis and nevertheless, 
there is a tendency to simplify the force parameter 
in most of  the studies. Brune et al.8 investigated the 
stress distribution of  a single implant crown buried 
in a bone block simulating the bone-implant osseoin-
tegration. Different occlusal setups were prepared as 
three occlusal contact areas and five occlusal areas. In 
addition, different cuspal angles were given as anoth-
er variable. Load was applied in the same direction 
of  the implant longitudinal axis with the magnitude 
of  100 N. The authors observed the difference in the 
pattern and intensity of  the stress distribution under 
the same load. Röehrle et al.9 questioned the validity 
of  the finite element analysis that adopted arbitrary 
point loads as force parameter since point loads are 
not the physiologic conditions.

However, upon review of  the literatures, it seems 
that the occlusal load configuration has not been 

dealt as an important factor. Rather, many studies 
have implied arbitrary or simplified occlusal points 
on their study.14-19 A newly developed digital occlusal 
analyzer, Accura, is capable of  providing the geo-
graphic information of  the occlusal area imprinted 
during mastication.20 The Accura is a piezoelectric 
sensor that converts the occlusal load into varying 
degree of  electrical charge which then can be cali-
brated to identify the magnitude of  occlusal load. 
The Accura is capable of  recording the masticatory 
force in 256 levels. The accura film sensor consists 
of  1,172 to 1,390 piezoelectric sensels and the loca-
tion of  the activated sensels can be used to deter-
mine the position of  the occlusal contacts.

The purpose of  this study was to compare the 
results of  the finite element analyses under two dif-
ferent loading conditions; arbitrary occlusion and the 
realistic occlusion obtained from Accura.

Materials and Methods

A left side mandibular hemisectioned mandibular 
model with teeth and bone (Fig. 1) was obtained 
from the subject’s cone-beam computed tomogra-
phy record with informed consent and was used as 
a template to create the mesh model for finite ele-
ment analysis. Different layers of  the model such as 
the cortical bone, cancellous bone, enamel, dentin, 

Fig. 1. Mesh models generated for finite element analysis. (A) Natural teeth model which consist of the mandibular 
cortical bone, cancellous bone, periodontal ligament, and teeth, (B) Implant model which consist of the mandibular 
cortical bone, cancellous bone, implant, abutment  screw, abutment, and crown.
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and periodontal ligament were segmented using the 
three-dimensional design software (Mimics, Materi-
alise NV, Leuven, Belgium). Those layers were con-
verted into mesh models using the mesh generation 
software (Visual-Mesh, ESI Group, Paris, France). 
The thickness of  the periodontal ligament was evenly 
provided as 0.2 mm according to previous studies21-23 
and assembled with the rest of  the layers.

The second model was identical to the first model 
except that posterior teeth were replaced with im-
plants. The implants were embedded in the model at 
the height of  the alveolar bone crest, and positioned 
as the center long axis of  the implants to aim the 
central fossa of  the occlusal surface. The geometry 
of  occlusal table remained identical compared to the 
first model. The geometry of  the implant system 

(Osstem GS, Osstem Implant Co., Ltd., Seoul, Ko-
rea) was provided by the manufacturer. The meshes 
for crowns were created and assembled together with 
other restorative components such as the abutment 
and screw.

Two types of  occlusions were used for the experi-
ment. For the arbitrary occlusion, multiple arbitrary 
points were designated at the functional cusps and 
fossae (Fig. 2), whereas for the natural occlusion, the 
occlusal data obtained from Accura digital occlusal 
analyzer (Accura, Dmetec Co. Ltd., Seoul, Korea) 
during maximum intercuspal position was used 
by superimposition of  the Accura data and model 
geometry (Fig. 3). The Accura occlusion data was 
obtained from the same subject who provided the 
mandibular model. In total, four experimental set-
ups were planned as listed in Table 1. Natural teeth 
model with arbitrary occlusion (NA), natural teeth 
model with natural occlusion (NN), implant model 
with arbitrary occlusion (IA), and implant model 
with natural occlusion (IN).

The parameters of  material properties used in 
this study were acquired from other studies23-33 as 
described in Table 2. The material conditions were 
assumed to be homogeneous, isotropic, and linear. 
The friction contact was applied as the interface con-
dition between implant components and the friction 
coefficient was 0.3.34,35 It was assumed that the bone-
to-implant contact ratio was 100%.1,36,37

Fig. 2. Arbitrary occlusion setup. Yellow points are 
arbitrary occlusal points designated on premolar and 
molar region.

Fig. 3. Natural occlusion setup. (A) Natural occlusion data acquisition by Accura, (B) Based on natural occlusion data, 
occlusal points were determined by superimposition of Accura data and model geometry.

A B
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The magnitude of  100 N load was provided ac-
cording to the occlusion setup. The directions of  
applied load were oblique to the long axis of  natural 
teeth or implants by ratio of  horizontal axis versus 
vertical axis as 1:5. For the arbitrary occlusion setup, 
100 N load was equally distributed to every occlusal 
point whereas for the natural occlusion setup, the 
100 N load was differentially distributed according to 
the Accura bite force information. Preload of  gold 
screw was set as 664 N.38.39 All those properties and 
restrictions were defined using the pre-processor 
software (Visual-Crash for PAM, ESI Group). The 
finite element analysis was performed using the 
solver software (Solver Launcher, ESI Group). The 
outcome value of  maximum von Mises stress and 
the amount of  displacement was observed for the 
evaluation.

Results

The maximum von Mises stress values measured 
from experimental models are listed in Table 3. 
There was considerable difference in stress value 
within natural teeth model with different occlusion 
setup (NA, NN). The location of  the maximum von 
Mises stress was similarly at the apex of  2nd premolar 
area in both occlusion setups. Unlike natural teeth 
models, implant models (IA, IN) showed relatively 
small difference in maximum von Mises stress value 
between the arbitrary and natural occlusion. Both oc-
clusion setups showed similar location of  maximum 
von Mises stress which was at the fixture screw of  
2nd premolar implant.

The maximum von Mises stress values measured 
at each of  the components are listed in Table 4. 
In natural teeth models, the maximum stress val-
ues of  individual components were quite different 
between both occlusion setups. However, implant 

Table 1. Experimental models setup

Model Object type Loading type Number of  elements Number of  nodes
NA Natural teeth Arbitrary occlusion 138,418 28,389
NN Natural teeth Natural occlusion 138,418 28,389
IA Implants Arbitrary occlusion 123,433 25,217
IN Implants Natural occlusion 123,433 25,217

Table 2. Material properties

Young’s Modulus 
(GPa)

Poisson’s 
ratio

Enamel 84.1 0.33
Dentin 14.7 0.31
Periodontal ligament 0.00017 0.45
Cortical bone 13.7 0.30
Cancellous bone 0.49 0.30
Titanium alloy (implant) 102 0.30
Gold alloy (abutment 
crown and screw) 100 0.33

Table 3. Maximum von Mises stress value (MPa) and location 
of  each model

Maximum 
von Mises stress Location

NA 28.41 2nd premolar apex
NN 51.57 2nd premolar apex
IA 882.40 2nd premolar fixture screw
IN 888.28 2nd premolar fixture screw

Table 4. Maximum von Mises stress values of  each component per models (MPa unit)

Cortical bone Cancellous bone Teeth Implant Screw Crown
NA 0.62 8.97 28.41
NN 1.36 16.33 51.57
IA 155.46 13.25 831.16 882.40 874.03
IN 145.00 14.387 831.34 888.28 876.59
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models showed relatively small difference in terms 
of  maximum stress values on individual components 
between arbitrary and natural occlusion setups. The 
differences in values did not exceed 10% of  greater 
values. The graphic demonstration of  von Mises 
stress distribution pattern of  different models are 
shown in Fig. 4. 

The maximum displacement values and locations 
are listed in Table 5. The displacement value of  
natural teeth models differed according to occlusal 
setups. The location where maximum displacement 
occurred was also different. In arbitrary occlusion, 
1st premolar buccal surface was most vulnerable to 
displacement while in natural occlusion, it was 2nd 
molar buccal surface. In implant models, the maxi-
mum displacement values differed considerably as 
well as their location of  maximum displacement. It 
was 1st premolar fixture screw area where maximum 
displacement occurred in the pearbitrary occlusion 
setup model (IA) whereas it was 1st molar fixture 
screw area for the natural occlusion setup model (IN).

Discussion

It was shown that different occlusal patterns lead 
to different results in terms of  the stress distribution 
and displacement. This result was in agreement with 
other studies that indicated different loading pattern 
to have significant influence on the stress distribu-
tion and subsequent outcome analysis.5-13 Therefore, 
providing an arbitrary loading condition for finite 
element analysis will have to be avoided as its result 
may not be close to real situation, especially when 
the study is aiming for a quantitative analysis of  indi-
vidual structure.

Fig. 4. Von Mises stress distribution pattern. (A) NA 
model, (B) NN model, (C) IA model, (D) IN model.
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Table 5. Maximum displacement values (mm unit) and 
locations of  each model 

Maximum 
displacement Location

NA 0.06 1st premolar buccal surface
NN 0.08 2nd molar buccal surface
IA 0.26 1st premolar fixture screw
IN 0.41 1st molar fixture screw
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There was a tendency that natural occlusion setup 
models (NN, IN) showed greater maximum von 
Mises stress and maximum displacement than arbi-
trary occlusion setup models (NA, IA) despite the 
greater numbers in occlusal points in arbitrary occlu-
sion setup. It could be attributed to the differential 
load distribution in natural occlusion setup models. 
The concentrated load resulted in greater stress and 
distribution. In addition, the locations of  maximum 
von Mises stress of  each models remained constant 
throughout different occlusion setups. However, 
different occlusion setups lead to change in the loca-
tions of  maximum displacement.

Accura is developed as a digitalized occlusion mea-
surement device with the capability of  real-time mea-
surement and data record.20 Its capability includes 
not only recording the occlusal point and force, but 
also the timing of  the occlusion. Therefore, it can 
provide accurate individual occlusion data for the 
computer simulation such as finite element analysis 
or occlusal measurement related quantitative study. 
Further development of  this device into a neces-
sary equipment in various dynamic analysis including 
computer simulation is expected.

The results of  the present study showed that the 
variations in outcome were considerable and could 
not be considered as negligible. It can be assumed 
that the result of  a single experimental modality may 
only represent a single situation and cannot be ap-
plied as a universal interpretation of  biomechanical 
behavior. The biomechanics of  a treatment protocol 
can be affected by various factors, especially occlu-
sal pattern, and therefore, its clinical performance 
prediction via finite element study may only deserve 
for limited validity. Based on the result of  this study, 
it would be highly desirable in finite element analy-
sis that various loading conditions both in terms 
of  magnitude and distribution to be provided for 
realistic prediction of  the results. Yet, there is little 
information regarding the sufficient range of  vari-
ous loading conditions to cover the real clinical situ-
ations. Further studies would be required to decide 
the sufficient range of  various loading conditions 
and occlusion in order to raise the predictability of  
finite element analysis in dentistry.

Conclusion

Different occlusal loading conditions lead to differ-
ent stress distribution pattern. The Arbitrary occlu-
sion and realistic occlusion that was acquired from 
Accura showed considerably different result in terms 
of  maximum von Mises stress and maximum dis-
placement level. 

In finite element analysis, it is recommended to 
simulate with occlusal contact point and force that 
are based on accurate measurement. 
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목적: 본 연구의 목적은 하악 구치부에서 두 가지 서로 다른 부하 양식에 따른 생역학적 결과를 비교하는 것이었다. 
연구 재료 및 방법: 하악 구치부 자연치열 및 임플란트 모델을 제작하였으며, 임의로 부여된 교합과 아큐라 디지털 교합

측정장치로 획득한 실제 교합 두 가지 하중 조건을 부여하였다. 임의로 부여된 교합의 경우, 총 100 N 하중을 교합점에 
균일하게 배분하였으며, 실제 교합의 경우는 총 100 N 하중을 아큐라(Accura, Dmetec Co. Ltd., Seoul, Korea)로 측정된 
정보에 근거하여 교합점에 차등 배분하였다. 하중에 대한 응력과 변위를 유한요소해석을 이용하여 분석하였다. 
결과: 유한요소해석 결과, 서로 다른 부하 조건 하에서 등가응력 및 변위 모두 상당한 차이를 보였다. 
결론: 유한요소해석 수행 시 정확한 측정에 기반한 실제 교합에 가까운 부하 조건을 재현하는 것이 추천된다.

(구강회복응용과학지 2020;36(2):112-20)
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