DOI QR코드

DOI QR Code

Effect of Glucosylceramides and Sterols Isolated from Agaricus Blazei Extract on Improvement of Skin Cell

신령버섯에서 분리된 Glucosylceramide 및 Sterol의 피부 세포 개선 효과

  • Received : 2020.03.11
  • Accepted : 2020.03.30
  • Published : 2020.06.30

Abstract

Agaricus blazei Murill (Almond mushroom) has many beneficial effects, such as anti-cancer, immuneenhancement, and anti-obesity. Also, its skin benefits have been reported for antioxidant, anti-inflammatory, and whitening. In order to elucidate these effects, many studies have been conducted. In this study, we reconfirmed the skin efficacy of the extract of the mushrooms mushrooms. The Agaricus blazei extract showed inhibition of melanin synthesis, enhancement of collagen synthesis, and up-regulation of gene expression (hyaluronan syntahase-2, 3 and aquaporin-3) at 100 ㎍/mL. and identified the ingredients from the extract. We further investigated them to find an applicability as cosmetic ingredients. The ingredients were confirmed comparison of their spectroscopic data with literature values. They were identified as being ergosterol (1), 5-dihydroergosterol (2), cerevisterol (3), cerebroside B (4), cerebroside D (5), adenosine (6), and benzoic acid (7). Among these compounds, we evaluated skin efficacy for two cerebrosides and three ergosterol derivatives that have not been reported its efficacy. As a result, 5-dihydroergosterol (2) inhibited melanogenesis in B16F10 and promoted collagen biosynthesis in human dermal fibroblast. In addition, cerevisterol (3), cerebroside B (4), and cerebroside D (5) inhibited NO production in RAW 264.7 cell. In particular, cerebroside D (5) increased the expression of hyaluronan synthase-2 and aquaporin-3 genes in HaCaT. These results suggest that Agaricus blazei extract and isolated compounds can be used as cosmetic ingredients.

신령버섯(Agaricus blazei Murill)은 항암, 면역력 개선, 항비만 등 다양한 효능이 알려져 있으며, 피부 효능으로는 항산화, 항염, 미백 등에 대하여 보고되었다. 이러한 효능을 뒷받침하기 위하여, 신령버섯의 성분 연구가 진행되었다. 따라서 본 연구에서는 신령버섯 추출물의 피부 효능을 재확인하고 유용한 효능성분을 밝혀내어 이를 화장품 소재로서 이용하고자 하였다. 신령버섯 추출물은 100 ㎍/mL에서 멜라닌 합성 저해, 콜라겐 합성 증진, 보습과 관련된 유전자(hyaluronan synthase-2, 3와 aquaporin-3) 발현 증가를 나타내었다. 이들 화합물은 분광학적 데이터와 문헌값을 비교하여 ergosterol (1), 5-dihydroergosterol (2), cerevisterol (3), cerebroside B (4), cerebroside D (5), adenosine (6), 및 benzoic acid (7)로 동정하였다. 이들 중 비교적 효능이 알려지지 않은 3종의 sterol (1-3)과 2종의 glucosylceramide (4, 5)에 대하여 피부효능을 평가하였으며, 그 결과 5-dihydroergosterol (2)이 마우스 흑색종 세포에서 멜라닌 생성을 억제하였으며, 또한 인간 진피 섬유아세포 세포에서 콜라겐 생합성 촉진하였다. 그리고 cerevisterol (3), cerebroside B (4), cerebroside D (5)는 마우스 대식세포에서 NO 생성을 억제하였으며, 특히 cerebroside D (5)는 인간각질형성세포에서 hyaluronan synthase-2와 aquaporin-3 유전자 발현을 증가시켰다. 따라서 신령버섯 추출물과 분리 화합물은 화장품 소재로 활용 가능 할 것으로 생각된다.

Keywords

References

  1. K. Basler, S. Bergmann, M. Heisig, A. Naegel, M. Zorn-Kruppa, and J. M. Brandner, The role of tight junctions in skin barrier function and dermal absorption, J Control Release, 242, 105 (2016). https://doi.org/10.1016/j.jconrel.2016.08.007
  2. J. Ye, A. Garg, C. Calhoun, K. R. Feingold, P. M. Elias, and R. Ghadially, Alterations in cytokine regulation in aged epidermis: implications for permeability barrier homeostasis and inflammation, I. IL-1 gene family, Exp. Dermatol., 11(3), 209 (2002). https://doi.org/10.1034/j.1600-0625.2002.110303.x
  3. J. Y. F ang, P. W. Wang, C. H. Huang, M. H. Chen, Y. R. Wu, and T. L. Pan, Skin aging caused by intrinsic or extrinsic processes characterized with functional proteomics, Proteomics, 16(20), 2718 (2016). https://doi.org/10.1002/pmic.201600141
  4. S. Y. Hwang, J. T. Lee, Y. U. Kim, and H. J. Kim, Skin whitening effects of extracts from angelicae Gigantis radix and Lycii fructus ethanol extracts, Herb. Formula Sci., 21(1), 91 (2013). https://doi.org/10.14374/HFS.2013.21.1.091
  5. N. C. Jenkins and D. Grossman, Role of melanin in melanocyte dysregulation of reactive oxygen species, Biomed Res Int, 2013, 908797 (2013).
  6. K. T, Kim, Y. H. Kim, J. G. Kim, C. S. Han, S. H. Park, B. Y. Lee, and K. H. Kim, Preparation of oligo hyaluronic acid by hydrolysis and its application as a cosmetic ingredient, J Soc. Cosmet. Sci. Korea, 33(3), 189 (2007).
  7. T. Ma, M. Hara, R. Sougrat, J. M. Verbavatz, and A. S. Verkman, Impaired stratum corneum hydration in mice lacking epidermal water channel aquaporin-3, J. Biol. Chem., 277(19), 17147 (2002). https://doi.org/10.1074/jbc.M200925200
  8. E. Papakonstantinou, M. Roth, and G. Karakiulakis, Hyaluronic acid: A key molecule in skin aging, Dermatoendocrinol, 4(3), 253 (2012). https://doi.org/10.4161/derm.21923
  9. C. R. Kim, Y. M. Kim, M. K. Lee, I. H. Kim, Y. H. Choi, and T. J. Nam, Pyropia yezoensis peptide promotes collagen synthesis by activating the TGF-$\beta$/Smad signaling pathway in the human dermal fibroblast cell line Hs27, Int. J. Mol. Med., 39(1), 31 (2017). https://doi.org/10.3892/ijmm.2016.2807
  10. S. E. Fligiel, J. Varani, S. C. Datta, S. Kang, G. J. Fisher, and J. J. Voorhee, Collagen degradation in aged/photodamaged skin in vivo and after exposure tomatrix metalloproteinase-1 in vitro, J. Invest. Dermatol., 120(5), 842 (2003). https://doi.org/10.1046/j.1523-1747.2003.12148.x
  11. P. Kalac, A review of chemical composition and nutritional value of wild‐growing and cultivated mushrooms, J. Sci. Food Agric., 93(2), 209 (2013). https://doi.org/10.1002/jsfa.5960
  12. K. D. Hyde, A. H. Bahkali, and M. A. Moslem, Fungi-an unusual source for cosmetics, Fungal Divers., 43(1), 1 (2010). https://doi.org/10.1007/s13225-010-0043-3
  13. M. L. Largeteau, R. C. Llarena-Hernandez, C. Regnault-Roger, and J.-M. Savoie, The medicinal Agaricus mushroom cultivated in Brazil: biology, cultivation and non-medicinal valorisation, Appl. Microbiol. Biotechnol., 92(5), 897 (2011). https://doi.org/10.1007/s00253-011-3630-7
  14. F. Firenzuoli, L. Gori, and G. Lombardo, The medicinal mushroom Agaricus blazei murrill: review of literature and pharmaco-toxicological problems, Evid Based Complement Altern Med, 5(1), 3 (2008). https://doi.org/10.1093/ecam/nem007
  15. R. W. Kerrigan, Agaricus subrufescens, a cultivated edible and medicinal mushroom, and its synonyms, Mycologia, 97(1), 12 (2005). https://doi.org/10.1080/15572536.2006.11832834
  16. W. S. Ahn, D. J. Kim, G. T. Chae, J. M. Lee, S. M. Bae, J. I. Sin, Y. W. Kim, S. E. Namkoong, and I. P. Lee, Natural killer cell activity and quality of life were improved by consumption of a mushroom extract, Agaricus blazei Murill Kyowa, in gynecological cancer patients undergoing chemotherapy, Int. J. Gynecol. Cancer, 14(4), 589 (2004). https://doi.org/10.1111/j.1048-891X.2004.14403.x
  17. N. Ohno, M. Furukawa, N. N. Miura, Y. Adachi, M. Motoi, and T. Yadomae, Antitumor $\beta$-glucan from the cultured fruit body of Agaricus blazei. Biol. Pharm. Bull., 24(7), 820 (2001). https://doi.org/10.1248/bpb.24.820
  18. H. J. Lee and J. B. Koh, Effects of liquid culture of Agaricus blazei Murill on lipid metabolism and enzyme activities in rats fed high fat diet, Korean J. Nutr., 36(4), 352 ( 2003 ).
  19. M. S. Kim, J. S. Lim, T. J. Park, K. W. Ko, and S. Y. Kim, Anti-inflammatory activity of Agaricus blazei extract in lipopolysaccharide-stimulated RAW 264.7 cells, Korean Soc. Biotechnol. Bioeng. J., 34(1), 31 (2019).
  20. K. N. Yoon, H. S. Jang, and G. H. Jin, Antioxidant, anti-diabetic, anti-cholinesterase, and nitric oxide inhibitory activities of fruiting bodies of Agaricus brasiliensis, Korean J. Clin. Lab. Sci, 47(4), 194 (2015). https://doi.org/10.15324/kjcls.2015.47.4.194
  21. H. C. Huang, T. F. Hsu, H. L. Chao, C. C. Chen, S. W. Chiu, and T. M. Chang, Inhibition of melanogenesis in murine melanoma cells by Agaricus brasiliensis methanol extract and anti-reactive oxygen species (ROS) activity, Afr. J. Microbiol. Res., 8(6), 519 (2014). https://doi.org/10.5897/AJMR2013.6271
  22. H. Kawagishi, R. Katsumi, T. Sazawa, T. mizuno, T. Hagiwara, and T. Nakamura, Cytotoxic steroids from the mushroom Agaricus blazei, Phytochemistry, 27(9), 2777 (1988). https://doi.org/10.1016/0031-9422(88)80662-9
  23. Y. Osaki, T. Kato, K. Yamamoto, J. Okubo, and T. Miyazaki, Antimutagenic and bactericidal substances in the fruit body of a basidiomycete Agaricus blazei, Jun-17, Yakugaku Zasshi, 114(5), 342 (1994). https://doi.org/10.1248/yakushi1947.114.5_342
  24. M. Hirotani, S. Hirotani, H. Takayanagi, and T. Yoshikawa, Blazeispirol A, an unprecedented skeleton from the cultured mycelia of the fungus Agaricus blazei, Tetrahedron Lett., 40(2), 329 (1999). https://doi.org/10.1016/S0040-4039(98)02343-0
  25. M. Hirotani, K. Sai, S. Hirotani, and T. Yoshikawa, Blazeispirols B, C, E and F, des-A-ergostane-type compounds, from the cultured mycelia of the fungus Agaricus blazei, Phytochemistry, 59(5), 571 (2002). https://doi.org/10.1016/S0031-9422(01)00445-9
  26. M. Hirotani, K. Sai, R. Nagai, S. Hirotani, H. Takayanagi, and T. Yoshikawa, Blazeispirane and protoblazeispirane derivatives from the cultured mycelia of the fungus Agaricus blazei, Phytochemistry, 61(5), 589 (2002). https://doi.org/10.1016/S0031-9422(02)00353-9
  27. M. Hirotani, S. Hirotani, H. Takayanagi, K. Komiyama, and T. Yoshikawa, Agariblazeispirols A and B, an unprecedented skeleton from the cultured mycelia of the fungus Agaricus blazei, Tetrahedron Lett., 44(43), 7975 (2003). https://doi.org/10.1016/j.tetlet.2003.08.111
  28. Y. Ueguchi, K. Matsunami, H. Otsuka, and K. Kondo, Constituents of cultivated Agaricus blazei, J Nat Med, 65(2), 307 (2011). https://doi.org/10.1007/s11418-010-0495-5
  29. M. H. Lee, H. J. Lee, and I. S. Cho, Chemical compositions of Agaricus blazei Murill fruiting bodies cultivated in a Korean local farm, J Fd Hyg Safety, 13(2), 94 (1998).
  30. Y. Tanahashi and T. Takahashi, Sterol constituents of Daedalea quercina L.(Fr.), Bull. Chem. Soc. Jpn., 39(4), 848 (1966). https://doi.org/10.1246/bcsj.39.848
  31. N. S hirane, H. T akenaka, K. Ueda, Y. H ashimoto, K. Katoh, and H. Ishii, Sterol analysis of dmi-resistant and -sensitive strains of Venturia inaequalis, Phytochemistry, 41(5), 1301 (1996). https://doi.org/10.1016/0031-9422(95)00787-3
  32. P. Mattila, A. M. Lampi, R. Ronkainen, J. Toivo, and V. Piironen, Sterol and vitamin D2 contents in some wild and cultivated mushrooms, Food Chem., 76(3), 293 (2002). https://doi.org/10.1016/S0308-8146(01)00275-8
  33. T. Takaku, Y. Kimura, and H. Okuda, Isolation of an antitumor compound from Agaricus blazei Murill and its mechanism of action, J. Nutr., 131(5), 1409 (2001). https://doi.org/10.1093/jn/131.5.1409
  34. D. M. Jeong, H. A. Jung, H. S. Kang, and J. S. Choi, Peroxynitrite scavengers from Phellinus linteus, Nat. Prod. Sci., 14(1), 1 (2008).
  35. D. Pereira, G. Correia-da-Silva, P. Valentio, N. Teixeira, and P. Andrade, Palmitic acid and ergosta-7,22-dien-3-ol contribute to the apoptotic effect and cell cycle arrest of an extract from Marthasterias glacialis L. in neuroblastoma cells, Mar Drugs, 12(1), 54 (2014). https://doi.org/10.3390/md12010054
  36. H. P ark, T. H. L ee, F. Chang, H. J. Kwon, J. Kim, and H. Kim, Synthesis of ergosterol and 5, 6-dihydroergosterol glycosides and their inhibitory activities on lipopolysaccharide-induced nitric oxide production, Bull. Korean Chem. Soc., 34(5), 1339 (2013). https://doi.org/10.5012/bkcs.2013.34.5.1339
  37. Y. Takaishi, M. Uda, T. Ohashi, K. Nakano, K. Murakami, and T. Tomimatsu, Glycosides of ergosterol derivatives from Hericum erinacens, Phytochemistry, 30(12), 4117 (1991). https://doi.org/10.1016/0031-9422(91)83478-4
  38. C. E. Bills and E. M. Honeywell, Antiricketic substances VIII. studies on highly purified ergosterol and its esters, J. Biol. Chem., 80(1), 15 (1928). https://doi.org/10.1016/S0021-9258(18)83902-3
  39. M. Makropoulou, N. Aligiannis, Z. Gonou-Zagou, H. Pratsinis, A. L. Skaltsounis, and N. Fokialakis, Antioxidant and cytotoxic activity of the wild edible mushroom Gomphus clavatus, J. Med. Food., 15(2), 216 (2012). https://doi.org/10.1089/jmf.2011.0107
  40. M. Jin, W. Zhou, C. Jin, Z. Jiang, S. Diao, Z. Jin, and G. Li, Anti-inflammatory activities of the chemical constituents isolated from Trametes versicolor, Nat. Prod. Res., 33(16), 2422 (2019). https://doi.org/10.1080/14786419.2018.1446011
  41. R. D. Sitrin, G. Chan, J. Dingerdissen, C. Debrosse, R. Mehta, G. Roberts, S. Rottschaefer, D. Staiger, J. Valenta, K. M. Snader, R. J. Stedman, and J. R. E. Hoover, Isolation and structure determination of Pachybasium cerebrosides which potentiate the antifungal activity of aculeacin, J. Antibiot., 41(4), 469 (1988). https://doi.org/10.7164/antibiotics.41.469
  42. H. W. Liu, L. Hu, A. L. Zhang, and J. M. Gao, Steroids and phenolic constituents from the fruiting bodies of the basidiomycete Sarcodon joedes, Nat. Prod. Res., 27(1), 80 (2013). https://doi.org/10.1080/14786419.2012.656112
  43. J. M. Yue, C. Q. Fan, J. Xu, and H. D. Sun, Novel ceramides from the fungus Lactarium volemus, J. Nat. Prod., 64(9), 1246 (2001). https://doi.org/10.1021/np010088+
  44. T. Jiang, T. Li, J. Li, H. Z. Fu, Y. H. Pei, and W. H. Lin, Cerebroside analogues from marine-derived fungus Aspergillus flavipes, J Asian Nat Prod Res, 6(4), 249 (2004). https://doi.org/10.1080/1028602031000147384
  45. X. F. Wu, X. X. Wu, W. J. Guo, Q. Luo, Y. H. Gu, Y. Shen, R. X. Tan, Y. Sun, and Q. Xu, Cerebroside D, a glycoceramide compound, improves experimental colitis in mice with multiple targets against activated T lymphocytes, Toxicol. Appl. Pharmacol., 263(3), 296 (2012). https://doi.org/10.1016/j.taap.2012.07.001
  46. P. Ciuffreda, S. Casati, and A. Manzocchi, Complete 1H and 13C NMR spectral assignment of ${\alpha}$- and $\beta$-adenosine, 2′-deoxyadenosine and their acetate derivatives, Magn Reson Chem, 45(9), 781 (2007). https://doi.org/10.1002/mrc.2036
  47. M. P. DeNinno, Adenosine. A. Doherty ed. Annual reports in medicinal chemistry, 33, Academic Press, San diego, CA (1998).
  48. U. J. Youn, Y. J. Lee, H. R. Jeon, H. J. Shin, Y. M. Son, J. W. Nam, A. R. Han, and E. K. Seo, A Pyridyl alkaloid and benzoic acid derivatives from the rhizomes of Anemarrhena asphodeloides, Nat. Prod. Sci., 16(4), 203 (2010).
  49. S. B. Maggirwar, D. N. Dhanraj, S. M. Somani, and V. Ramkumar, Adenosine acts as an endogenous activator of the cellular antioxidant defense system, Biochem. Biophys. Res. Commun., 201(2), 508 (1994). https://doi.org/10.1006/bbrc.1994.1731
  50. B. N. Cronstein, Adenosine, an endogenous antiinflammatory agent, J. Appl. Physiol., 76(1), 5 (1994). https://doi.org/10.1152/jappl.1994.76.1.5
  51. M. Y. Kim, H. E. Lee, M. Im, Y. Lee, C. D. Kim, J. H. Lee, and Y. J. Seo, Effect of adenosine on melanogenesis in B16 cells and zebrafish, Ann Dermatol, 26(2), 209 (2014). https://doi.org/10.5021/ad.2014.26.2.209
  52. G. Kang, T. N. T. Tu, S. Kim, H. Yang, M. Jang, D. Jo, J. Ryu, J. Baek, and H. Jung, Adenosineloaded dissolving microneedle patches to improve skin wrinkles, dermal density, elasticity and hydration, Int J Cosmet Sci, 40(2), 199 (2018). https://doi.org/10.1111/ics.12453
  53. A. K. Sanyal, D. Roy, B. Chowdhury, and A. B. Banerjee, Ibuprofen, a unique anti‐inflammatory compound with antifungal activity against dermatophytes, Lett. Appl. Microbiol., 17(3), 109 (1993). https://doi.org/10.1111/j.1472-765X.1993.tb01436.x
  54. B. Nair, Final report on the safety assessment of benzyl alcohol, benzoic acid, and sodium benzoate, Int. J. Toxicol., 20, 23 (2001). https://doi.org/10.1080/10915810152630729
  55. T. Mizuno, Kawariharatake, Agaricus blazei Murill: Medicinal and dietary effects, Food Rev. Int., 11(1), 167 (1995). https://doi.org/10.1080/87559129509541026