Acknowledgement
The authors would like to thank the Natural Science Basic Research Program of Shaanxi (2019JQ-762), Project funded by China Postdoctoral Science Foundation (2018M643809XB). Project Foundation of Department of Housing and Urban Rural Development of Shaanxi Province (2019-K39). We also thank LetPub (www.letpub.com) for its linguistic assistance during the preparation of this manuscript.
References
- Aliabadian, Z., Sharafisafa, M., Mortazavi, A. and Maarefvand, P. (2014), "Wave and fracture propagation in continuum and faulted rock masses: Distinct element modeling", Arab. J. Geosci., 7(12), 5021-5035. https://doi.org/10.1007/s12517-013-1155-3.
- Cheng, Y., Song, Z.P., Jin, J.F. and Yang, T.T. (2019), "Attenuation characteristics of stress wave peak in sandstone subjected to different axial stresses", Adv. Mater. Sci. Eng. https://doi.org/10.1155/2019/6320601.
- Davies, E.D.H. and Hunter, S.C. (1963), "The dynamics compression testing of solids by the method of the split Hopkinson pressure bar", J. Mech. Phys. Solids, 11(1), 155-179. https://doi.org/10.1016/0022-5096(63)90050-4.
- Fan, L., Meng, W.N., Teng, L. and Khayat, K.H. (2020), "Effects of lightweight sand and steel fiber contents on the corrosion performance of steel rebar embedded in UHPC", Constr. Build. Mater., 238, 117709. https://doi.org/10.1016/j.conbuildmat.2019.117709.
- Fan, L.F. and Sun, H.Y. (2015), "Seismic wave propagation through an in-situ stressed rock mass", J. Appl. Geophys., 121(13), 13-20. https://doi.org/10.1016/j.jappgeo.2015.07.002.
- Fan, L.F., Ren, F. and Ma, G.W. (2011), "An extended displacement discontinuity method for analysis of stress wave propagation in viscoelastic rock mass", J. Rock Mech. Geotech. Eng., 3(1), 73-81. https://doi.org/10.3724/sp.j.1235.2011.00073.
- Huang, M., Xu, C.S., Zhan, J.W. and Wang, J.B. (2017), "Comparative study on dynamic properties of argillaceous siltstone and its grouting-reinforced body", Geomech. Eng., 13(2), 333-352. https://doi.org/10.12989/gae.2017.13.2.333.
- Jin, J.F., Cheng, Y., Chang, X.X., Yuan, W., Liang, C. and Wang, J. (2017), "Experimental study on stress wave propagation characteristics in red sandstone under axial static stress", J. Rock Mech. Eng., 36(8), 1939-1950. https://doi.org/10.13722/j.cnki.jrme.2016.1458.
- Ju, Y., Sudak, L. and Xie, H.P. (2006), "Study on stress wave propagation in fractured rocks with fractal joint surfaces", Int. J. Solids Struct., 44(13), 4256-4271. https://doi.org/10.1016/j.ijsolstr.2006.11.015.
- Khosravani, M.R., Nasiri, S., Anders, D. and Weinberg, K. (2019a), "Prediction of dynamic properties of ultra-high performance concrete by an artificial intelligence approach", Adv. Eng. Softw., 127, 51-58. https://doi.org/10.1016/j.advengsoft.2018.10.002.
- Khosravani, M.R., Wagner, P., Frohlich, D. and Weinberg, K. (2019b), "Dynamic fracture investigations of ultra-high performance concrete by spalling tests", Eng. Struct., 201, 109844. https://doi.org/10.1016/j.engstruct.2019.109844.
- Li, J.C., Ma, G.W. and Huang, X. (2010), "Analysis of wave propagation through a filled rock joint", Rock Mech. Rock Eng., 43(6), 789-798. https://doi.org/10.1007/s00603-009-0033-5.
- Li, X.B., Lok, T.S. and Zhao, J. (2005), "Dynamic characteristics of granite subjected to intermediate loading rate", Rock Mech. Rock Eng., 38(1), 21-39. https://doi.org/10.1007/s00603-004-0030-7.
- Lifshitz, J.M. and Leber, H. (1994), "Data processing in the split Hopkinson pressure bar tests", Int. J. Impact Eng., 15(6), 723-733. https://doi.org/10.1016/0734-743X(94)90011-9.
- Nikadat, N. and Marji, M.F. (2016), "Analysis of stress distribution around tunnels by hybridized FSM and DDM considering the influences of joints parameters", Geomech. Eng., 11(2), 269-288. https://doi.org/10.12989/gae.2016.11.2.269.
- Pyrak-Nolte, L.J. (1996), "The seismic response of fractures and the interrelations among fracture properties", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 33(8), 787-802. https://doi.org/10.1016/S0148-9062(96)00022-8.
- Song, Z.P., Mao, J.C., Tian, X.X., Zhang, Y.W. and Wang, J.B. (2019), "Optimization analysis of controlled blasting for passing through houses at close range in super - large section tunnels", Shock Vib. https://doi.org/10.1155/2019/1941436.
- Tian, X.X., Song, Z.P. and Wang, J.B. (2019), "Study on the propagation law of tunnel blasting vibration in stratum and blasting vibration reduction technology", Soil Dyn. Earthq. Eng., 126, 105813. https://doi.org/10.1016/j.soildyn.2019.105813.
- Wang, G.S., Li, C.H., Hu, S.L. and Li, S.H. (2010), "Study on effect of contact area of structural plane on propagating properties of stress wave", Min. Res. Develop., 30(2), 50-54. https://doi.org/10.13827/j.cnki.kyyk.2010.02.011.
- Wang, J., Liu, F. and Zhang, J. (2019a), "Investigation on the propagation mechanism of explosion stress wave in underground mining", Geomech. Eng., 17(3), 297-307. https://doi.org/10.12989/gae.2019.17.3.297.
- Wang, T., Song Z.P., Yang J.Y., Wang, J.B. and Zhang X.G. (2019b), "Experimental research on dynamic response of red sandstone soil under impact loads", Geomech. Eng., 17(4), 393-403. https://doi.org/10.12989/gae.2019.17.4.393.
- Wu, K. and Shao, Z. (2019a), "Study on the effect of flexible layer on support structures of tunnel excavated in viscoelastic rocks", J. Eng. Mech., 145(10), 04019077. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001657.
- Wu, K. and Shao, Z. (2019b), "Visco-elastic analysis on the effect of flexible layer on mechanical behavior of tunnels", Int. J. Appl. Mech., 11(3), 1950027. https://doi.org/10.1142/S1758825119500273.
- Yoshida, S., Furuya, S. and Nishida, M. (2019), "High speed impact test on rock specimens with a compressive stress pulse". Eng. Fract. Mech., 212(S1), 132-146. https://doi.org/10.1016/j.engfracmech.2018.03.021.
Cited by
- Energy Evolution Principles of Shock-Wave in Sandstone under Unloading Stress vol.24, pp.10, 2020, https://doi.org/10.1007/s12205-020-1691-9
- Creep hardening damage constitutive model of coal with fracture proppant vol.17, pp.6, 2020, https://doi.org/10.1093/jge/gxaa061
- Analysis on the Influence of Shaft and Cross Passage Turn to the Main Line of Ingate under Different Construction Schemes vol.2021, 2020, https://doi.org/10.1155/2021/6662489