Acknowledgement
This study was financially supported by the China Postdoctoral Science Foundation (Grant No. 2019M653403).
References
- Alehossein, H. and Poulsen B.A. (2010), "Stress analysis of longwall top coal caving", Int. J. Rock Mech. Min. Sci., 47(1), 30-41. http://doi.org/10.1016/j.ijrmms.2009.07.004.
- Ashtari, M., Mousavi, S.E., Cheshomi, A. and Khamechian, M. (2019), "Evaluation of the single compressive strength test in estimating uniaxial compressive and Brazilian tensile strengths and elastic modulus of marlstone", Eng. Geol., 248, 256-266. https://doi.org/10.1016/j.enggeo.2018.12.005.
- Berkowitz, B. (2002), "Characterizing flow and transport in fractured geological media: A review", Adv. Water Resour., 25(8), 861-884. http://doi.org/10.1016/S0309-1708(02)00042-8.
- Beskardes, G.D. and Weiss, C. (2018), "Modelling dc responses of 3-D complex fracture networks", Geophys. J. Int., 214, 1901-1912. http://doi.org/10.1093/gji/ggy234.
- Daniel, B. and Robert, J. (2019), "Experimental study on models of cylindrical steel tanks under mining tremors and moderate earthquakes", Earthq. Struct., 17(2), 175-189. https://doi.org/10.12989/eas.2019.17.2.175.
- Daniel, B., Michal, W. and Robert, J. (2020), "Numerical investigation on behaviour of cylindrical steel tanks during mining tremors and moderate earthquakes", Earthq. Struct., 18(1), 97-111. https://doi.org/10.12989/eas.2020.18.1.097.
- Gao, M.Z., Jin, W.C., Dai, Z.X. and Xie, J. (2013), "Relevance between abutment pressure and fractal dimension of crack network induced by mining", Int. J. Min. Sci. Technol., 23(6), 925-930. http://doi.org/10.1016/j.ijmst.2013.11.008.
- Gao, M.Z., Zhang, R., Xie, J., Peng, G.Y., Yu, B. and Ranjith, P.G. (2018), "Field experiments on fracture evolution and correlations between connectivity and abutment pressure under top coal caving conditions", Int. J. Rock Mech. Min. Sci., 111, 84-93. http://doi.org/10.1016/j.ijrmms.2018.01.003.
- Jafari, A. and Babadagli, T. (2012), "Estimation of equivalent fracture network permeability using fractal and statistical network properties", J. Petrol. Sci. Eng., 92-93, 110-123. http://doi.org/10.1016/j.petrol.2012.06.007.
- Krishanu, R., Hieng, H.L. and James, B.P.L. (2019), "Finite element modelling of back-to-back built-up cold-formed stainless-steel lipped channels under axial compression", Steel Compos. Struct., 33(1), 37-66. https://doi.org/10.12989/scs.2019.33.1.037.
- Lata, P. and Himanshi, Z. (2019), "Fractional order generalized thermoelastic study in orthotropic medium of type GN-III", Geomech. Eng., 19(4), 295-305. http://doi.org/10.12989/gae.2019.19.4.295.
- Lee, C., Nam, H., Lee, W., Choo, H. and Ku, T. (2019), "Estimating UCS of cement-grouted sand using characteristics of sand and UCS of pure grout", Geomech. Eng., 19(4), 343-352. http://doi.org/10.12989/gae.2019.19.4.343.
- Li, S., Gao, M., Yang, X., Zhang, R., Ren, L., Zhang, Z., Li, G., Zhang, Z. and Xie, J. (2018), "Numerical simulation of spatial distributions of mining-induced stress and fracture fields for three coal mining layouts", J. Rock Mech. Geotech. Eng., 10(5). http://doi.org/10.1016/j.jrmge.2018.02.008.
- Mohammadi, H. and Pietruszczak, S. (2019), "Description of damage process in fractured rocks", Int. J. Rock Mech. Min. Sci., 113, 295-302. http://doi.org/10.1016/j.ijrmms.2018.12.003.
- Qiu, Z.Q., Gao, M.Z., Lv, Y.C., Wang, M., Xie, J., Xu, X.L. and Zhang, Z.P. (2016), "New calculation method for drilling three-dimensional connectivity rate and its engineering application", Safety Coal Mines, 47(10), 44-47. http://doi.org/10.3321/j.issn:1000-6915.2005.15.003.
- Shi, L.Q., Xu, D.L., Wang, Y., Qiu, M. and Hao, J. (2019), "A novel conceptual model of fracture evolution patterns in the overlying strata during horizontal coal seam mining", Arab. J. Geosci., 12(10), 1-9. http://doi.org/10.1007/s12517-019-4486-x.
- Singh, G.S.P. and Singh, U.K. (2009), "A numerical modeling approach for assessment of progressive caving of strata and performance of hydraulic powered support in longwall workings", Comput. Geotech., 36(7), 1142-1156. http://doi.org/10.1016/j.compgeo.2009.05.001.
- Smyth, M. and Buckley, M.J. (1993), "Statistical analysis of the microlithotype sequences in the Bulli Seam, Australia, and relevance to permeability for coal gas", Int. J. Coal Geol., 22(3-4), 167-187. http://doi.org/10.1016/0166-5162(93)90025-6.
- Unver, B. and Yasitli, N.E. (2006), "Modelling of strata movement with a special reference to caving mechanism in thick seam coal mining", Int. J. Coal Geol., 66(4), 227-252. http://doi.org/10.1016/j.coal.2005.05.008.
- Usanov, S.V., Mel'Nik, V.V. and Zamyatin, A.L. (2013), "Monitoring rock mass transformation under induced movements", J. Min. Sci., 49(6), 913-918. http://doi.org/10.1134/S1062739149060105.
- Wang, C., Zhang, N.C., Han, Y.F., Xiong, Z.Q. and Qian, D.Y. (2013), "Experiment research on overburden mining-induced fracture evolution and its fractal characteristics in ascending mining", Arab. J. Geosci., 8(1), 13-21. http://doi.org/10.1007/s12517-013-1178-9.
- Yasitli, N.E. and Unver, B. (2005), "3D numerical modeling of longwall mining with top-coal caving", Int. J. Rock Mech. Min. Sci., 42(2), 219-235. http://doi.org/10.1016/j.ijrmms.2004.08.007.
- Yu, B., Zhang, R., Gao, M.Z., Li, G., Zhang, Z.T. and Liu, Q.Y. (2015), "Numerical approach to the top coal caving process under different coal seam thicknesses", Therm. Sci., 19(4), 1423-1428. http://doi.org/10.2298/TSCI1504423Y.
- Zhang, R., Ai T., Zhou, H.W., Ju, Y. and Zhang, Z.T. (2015), "Fractal and volume characteristics of 3D mining-induced fractures under typical mining layouts", Environ. Earth Sci., 73(10), 6069-6080. http://doi.org/10.1007/s12665-015-4376-9.