DOI QR코드

DOI QR Code

A LOCAL CONSERVATIVE MULTISCALE METHOD FOR ELLIPTIC PROBLEMS WITH OSCILLATING COEFFICIENTS

  • JEON, YOUNGMOK (DEPARTMENT OF MATHEMATICS, AJOU UNIVERSITY) ;
  • PARK, EUN-JAE (DEPARTMENT OF COMPUTATIONAL SCIENCE AND ENGINEERING, YONSEI UNIVERSITY)
  • 투고 : 2020.06.05
  • 심사 : 2020.06.16
  • 발행 : 2020.06.25

초록

A new multiscale finite element method for elliptic problems with highly oscillating coefficients are introduced. A hybridization yields a locally flux-conserving numerical scheme for multiscale problems. Our approach naturally induces a homogenized equation which facilitates error analysis. Complete convergence analysis is given and numerical examples are presented to validate our analysis.

키워드

과제정보

Y. JEON was supported by National Research Foundation of Korea grant funded by the Korea government (2018R1D1A1A09082082). E.-J. PARK was supported by National Research Foundation of Korea grant funded by the Korea government (NRF-2015R1A5A1009350).

참고문헌

  1. T. Arbogast, Homogenization-based mixed multiscale finite elements for problems with anisotropy, Multiscale Modeling and Simulation 9 (2) (2011), pp. 624-653. https://doi.org/10.1137/100788677
  2. A. Bensoussan, J.-L. Lions, G. Papanicolaou, Asymptotic Analysis for periodic Structures, North-Holland, Amsterdam, 1978.
  3. T. J. R. Hughes, G. R. Feijoo, L. Mazzei, J.-B. Quincy, The variational multiscale method. A paradigm for computational mechanics, Comput. Methods Appl. Mech. Engrg. 166 (1998) 3-24. https://doi.org/10.1016/S0045-7825(98)00079-6
  4. J. T. Oden, K. S. Vemaganti, Adaptive hierarchical modeling of heterogeneous structures, Phys. D 133 (1999) 404-415. https://doi.org/10.1016/S0167-2789(99)00085-8
  5. Z. Chen, T. Y. Hou, A mixed multiscale finite element method for elliptic problems with oscillating coefficients, Math. Comp. 72 (2003) 541-576. https://doi.org/10.1090/S0025-5718-02-01441-2
  6. Y. Efendiev, T. Hou, Multiscale Finite Element Methods, Theory and Applications, Surveys and Tutorials in the Applied Mathematical Sciences, vol.4. Springer, New York, 2009.
  7. T. Y. Hou, X.-H.Wu, A multiscale finite element method for elliptic problems in composite materials and porous media, J. Comput. Phys. 134 (1997) 169-189. https://doi.org/10.1006/jcph.1997.5682
  8. T. Y. Hou, X.-H. Wu, Y. Zhang, Removing the cell resonance error in the multiscale finite element method via a Petrov-Galerkin formulation, Commun. Math. Sci. 2 (2) (2004) 185-205. https://doi.org/10.4310/CMS.2004.v2.n2.a3
  9. F. Brezzi, Interacting with the subgrid world, in: Numerical Analysis 1999 (Dundee), in: Chapman & Hall/CRC Res. Notes Math., vol. 420, Chapman & Hall/CRC, Boca Raton, FL, 2000, pp. 69-82.
  10. G. Sangalli, Capturing small scales in elliptic problems using a residual-free bubbles finite element method, Multiscale Model. Simul. 1 (2003) 485-503. https://doi.org/10.1137/S1540345902411402
  11. W. E, B. Engquist, The heterogeneous multi-scale methods, Commun. Math. Sci. 1 (1) (2003) 87-132. https://doi.org/10.4310/CMS.2003.v1.n1.a8
  12. R. Du, P. Ming, Convergence of the heterogeneous multiscale finite element method for ellitpic problems with nonsmoothe microstructures, Multisclae Model. Simul. 8(5) (2010) 1770-1783. https://doi.org/10.1137/090780754
  13. C. Schwab, A.-M. Matache, Generalized FEM for homogenization problems, in: Multiscale and Multiresolution Methods, in: Lect. Notes Comput. Sci. Eng., vol. 20, Springer-Verlag, Berlin, 2002, pp. 197-237.
  14. T. Arbogast, G. Pencheva, M. F. Wheeler, and I. Yotov, A multiscale mortar mixed finite element method. Multiscale Model. Simul. Vol. 6, No. 1, (2007), pp. 319-346. https://doi.org/10.1137/060662587
  15. M.-Y. KIM, E.-J. PARK, S. G. THOMAS, AND M. F. WHEELER, A multiscale mortar mixed finite element method for slightly compressible flows in porous media, J. Korean Math. Soc. 44 (2007), No. 5, pp. 1103-1119 https://doi.org/10.4134/JKMS.2007.44.5.1103
  16. M. Arshad, E.-J. Park, and D.-w. Shin, Analysis of Multiscale Mortar Mixed Approximation of Nonlinear Elliptic Equations, Computers & Mathematics with Applications, Vol 75, No. 2, (2018), 401-418 https://doi.org/10.1016/j.camwa.2017.09.031
  17. M.-Y. KIM AND M. F. WHEELER, A multiscale discontinuous galerkin method for convection-diffusion-reaction problems, Computers & Mathematics with Applications, 68 (2014), pp. 2251-2261. https://doi.org/10.1016/j.camwa.2014.08.007
  18. Y. Jeon, A multiscale cell boundary element method for elliptic problems, Appl. Numer. Math. 59 (11) (2009) 2801-2813. https://doi.org/10.1016/j.apnum.2008.12.029
  19. Y. Jeon, E.-J. Park, Nonconforming cell boundary element methods for elliptic problems on triangular mesh, Appl. Numer. Math. 58 (6) (2008) 800-814. https://doi.org/10.1016/j.apnum.2007.02.010
  20. Y. Jeon, E.-J. Park, A hybrid discontinuous Galerkin method for elliptic problems, SIAM J. Numer. Anal. 48 (5) (2010) 1968-1983. https://doi.org/10.1137/090755102
  21. Y. Jeon, E.-J. Park, New locally conservative finite element methods on a rectangular mesh, Numerische Mathematik, 123 (2013), no.1, 97-119. https://doi.org/10.1007/s00211-012-0477-5
  22. Y. Jeon, and E.-J. Park, D.-w. Shin, Hybrid Spectral Difference Methods for an Elliptic Equation, Comput. Methods Appl. Math. vol.17 no.2 (2017), 253-267. https://doi.org/10.1515/cmam-2016-0043
  23. M.-Y. KIM AND M. F. WHEELER, Coupling discontinuous Galerkin discretizations using mortar finite elements for advection-diffusion-reaction problems, Computers & Mathematics with Applications, 67 (2014), pp. 181-198. https://doi.org/10.1016/j.camwa.2013.11.002
  24. Y. Jeon, E.-J. Park, D. Sheen, A hybridized finite element method for the Stokes problem, Computers & Mathematics with Applications Vol. 68, No. 12 Part B, (2014), 2222-2232. https://doi.org/10.1016/j.camwa.2014.08.005
  25. D.-w. Shin, Y. Jeon, and E.-J. Park, A hybrid discontinuous Galerkin method for advection-diffusion-reaction problems, Applied Numerical Mathematics, 95 (2015), 292-303. https://doi.org/10.1016/j.apnum.2014.11.003
  26. L. Zhao and E.-J. Park. A new hybrid staggered discontinuous Galerkin method on general meshes. Journal of Scientific Computing, 82:12, 2020. https://doi.org/10.1007/s10915-019-01119-6
  27. P. Jenny, S. H. Lee, H. A. Tchelepi, Multi-scale finite-volume method for elliptic problems in subsurface flow simulation, J. Comput. Phys. 187 (2003) 47-67. https://doi.org/10.1016/S0021-9991(03)00075-5
  28. V. V. Jikov, S. M. Kozlov, O. A. Oleinik, Homogenization of Differential Operators and Integral Functionals, Springer-Verlag, Berlin, Heidelberg, 1994.
  29. G. Allaire, R. Brizzi, A multiscale finite element method for numerical homogenization, Multiscale Model. Simul. 4 (3) (2005) 790-812. https://doi.org/10.1137/040611239
  30. A. Abdulle, W. E, Finite difference HMM for homogenization problems, J. Comput. Phys. 191 (2003) 18-39. https://doi.org/10.1016/S0021-9991(03)00303-6
  31. M. G. Larson and A.Malqvist, Adaptive variational multiscale methods based on a posteriori error estimation: Energy norm estimates for elliptic problems, Computer Methods in Applied Mechanics and Engineering 196 (2007), no. 21-24, 2313-2324. https://doi.org/10.1016/j.cma.2006.08.019