참고문헌
- A. TOSELLI AND O. WIDLUND, Domain Decomposition Methods-Algorithms and Theory, vol. 34, Springer, Berlin, 2005.
- A. QUARTERONI AND A. VALLI, Domain Decomposition Methods for Partial Differential Equations, Oxford University Press, New York, 1999.
- J. XU, Iterative methods by space decomposition and subspace correction, SIAM Rev., 34 (1992), pp. 581-613. https://doi.org/10.1137/1034116
- C. R. DOHRMANN, A preconditioner for substructuring based on constrained energy minimization, SIAM J. Sci. Comput., 25 (2003), pp. 246-258. https://doi.org/10.1137/S1064827502412887
- J. MANDEL, Balancing domain decomposition, Commun. Numer. Methods Engrg., 9 (1993), pp. 233-241. https://doi.org/10.1002/cnm.1640090307
- C. FARHAT, M. LESOINNE, AND K. PIERSON, A scalable dual-primal domain decomposition method, Numer. Linear Algebra Appl., 7 (2000), pp. 687-714. https://doi.org/10.1002/1099-1506(200010/12)7:7/8<687::AID-NLA219>3.0.CO;2-S
- C. FARHAT AND F.-X. ROUX, A method of finite element tearing and interconnecting and its parallel solution algorithm, Internat. J. Numer. Methods Engrg., 32 (1991), pp. 1205-1227. https://doi.org/10.1002/nme.1620320604
- C.-O. LEE AND E.-H. PARK, A dual iterative substructuring method with a penalty term, Numer. Math., 112 (2009), pp. 89-113. https://doi.org/10.1007/s00211-008-0202-6
- L. I. RUDIN, S. OSHER, AND E. FATEMI, Nonlinear total variation based noise removal algorithms, Phys. D, 60 (1992), pp. 259-268. https://doi.org/10.1016/0167-2789(92)90242-F
- D. STRONG AND T. CHAN, Edge-preserving and scale-dependent properties of total variation regularization, Inverse Problems, 19 (2003), pp. S165-S187. https://doi.org/10.1088/0266-5611/19/6/059
- A. CHAMBOLLE, An algorithm for total variation minimization and applications, J. Math. Imaging Vision, 20 (2004), pp. 89-97. https://doi.org/10.1023/b:jmiv.0000011321.19549.88
- Y. WANG, J. YANG, W. YIN, AND Y. ZHANG, A new alternating minimization algorithm for total variation image reconstruction, SIAM J. Imaging Sci., 1 (2008), pp. 248-272. https://doi.org/10.1137/080724265
- A. BECK AND M. TEBOULLE, A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM J. Imaging Sci., 2 (2009), pp. 183-202. https://doi.org/10.1137/080716542
- T. GOLDSTEIN AND S. OSHER, The split Bregman method for L1-regularized problems, SIAM J. Imaging Sci., 2 (2009), pp. 323-343. https://doi.org/10.1137/080725891
- A. CHAMBOLLE AND T. POCK, A first-order primal-dual algorithm for convex problems with applications to imaging, J. Math. Imaging Vision, 40 (2011), pp. 120-145. https://doi.org/10.1007/s10851-010-0251-1
- E. ESSER, X. ZHANG, AND T. F. CHAN, A general framework for a class of first order primal-dual algorithms for convex optimization in imaging science, SIAM J. Imaging Sci., 3 (2010), pp. 1015-1046. https://doi.org/10.1137/09076934X
- L. BADEA, Convergence rate of a Schwarz multilevel method for the constrained minimization of nonquadratic functionals, SIAM J. Numer. Anal., 44 (2006), pp. 449-477. https://doi.org/10.1137/S003614290342995X
- L. BADEA AND R. KRAUSE, One-and two-level Schwarz methods for variational inequalities of the second kind and their application to frictional contact, Numer. Math., 120 (2012), pp. 573-599. https://doi.org/10.1007/s00211-011-0423-y
- X.-C. TAI AND J. XU, Global and uniform convergence of subspace correction methods for some convex optimization problems, Math. Comp., 71 (2001), pp. 105-124. https://doi.org/10.1090/S0025-5718-01-01311-4
- M. FORNASIER, A. LANGER, AND C.-B. SCHONLIEB, A convergent overlapping domain decomposition method for total variation minimization, Numer. Math., 116 (2010), pp. 645-685. https://doi.org/10.1007/s00211-010-0314-7
- M. FORNASIER AND C.-B. SCHONLIEB, Subspace correction methods for total variation and l1-minimization, SIAM J. Numer. Anal., 47 (2009), pp. 3397-3428. https://doi.org/10.1137/070710779
-
M. HINTERMULLER AND A. LANGER, Subspace correction methods for a class of nonsmooth and nonadditive convex variational problems with mixed
$L^1$ /$L^2$ data-fidelity in image processing, SIAM J. Imaging Sci., 6 (2013), pp. 2134-2173. https://doi.org/10.1137/120894130 - Y. DUAN AND X.-C. TAI, Domain decomposition methods with graph cuts algorithms for total variation minimization, Adv. Comput. Math., 36 (2012), pp. 175-199. https://doi.org/10.1007/s10444-011-9213-4
- A. LANGER, S. OSHER, AND C.-B. SCHONLIEB, Bregmanized domain decomposition for image restoration, J. Sci. Comput., 54 (2013), pp. 549-576. https://doi.org/10.1007/s10915-012-9603-x
- C.-O. LEE, J. H. LEE, H. WOO, AND S. YUN, Block decomposition methods for total variation by primal-dual stitching, J. Sci. Comput., 68 (2016), pp. 273-302. https://doi.org/10.1007/s10915-015-0138-9
- C.-O. LEE AND C. NAM, Primal domain decomposition methods for the total variation minimization, based on dual decomposition, SIAM J. Sci. Comput., 39 (2017), pp. B403-B423. https://doi.org/10.1137/15M1049919
- H. CHANG, X.-C. TAI, L.-L. WANG, AND D. YANG, Convergence rate of overlapping domain decomposition methods for the Rudin-Osher-Fatemi model based on a dual formulation, SIAM J. Imaging Sci., 8 (2015), pp. 564-591. https://doi.org/10.1137/140965016
- M. HINTERMULLER AND A. LANGER, Non-overlapping domain decomposition methods for dual total variation based image denoising, J. Sci. Comput., 62 (2015), pp. 456-481. https://doi.org/10.1007/s10915-014-9863-8
- C.-O. LEE AND J. PARK, Fast nonoverlapping block Jacobi method for the dual Rudin-Osher-Fatemi model, SIAM J. Imaging Sci., 12 (2019), pp. 2009-2034. https://doi.org/10.1137/18M122604X
- C.-O. LEE, E.-H. PARK, AND J. PARK, A finite element approach for the dual Rudin-Osher-Fatemi model and its nonoverlapping domain decomposition methods, SIAM J. Sci. Comput., 41 (2019), pp. B205-B228. https://doi.org/10.1137/18m1165499
- C.-O. LEE AND J. PARK A finite element nonoverlapping domain decomposition method with Lagrange multipliers for the dual total variation minimizations, J. Sci. Comput., 81 (2019), pp. 2331-2355. https://doi.org/10.1007/s10915-019-01085-z
- Y. DUAN, H. CHANG, AND X.-C. TAI, Convergent non-overlapping domain decomposition methods for variational image segmentation, J. Sci. Comput., 69 (2016), pp. 532-555. https://doi.org/10.1007/s10915-016-0207-8
- T. F. CHAN, S. ESEDOGLU, AND M. NIKOLOVA, Algorithms for finding global minimizers of image segmentation and denoising models, SIAM J. Appl. Math., 66 (2006), pp. 1632-1648. https://doi.org/10.1137/040615286
- T. F. CHAN AND L. A. VESE, Active contours without edges, IEEE Trans. Image Process., 10 (2001), pp. 266- 277. https://doi.org/10.1109/83.902291
- J. PARK, An overlapping domain decomposition framework without dual formulation for variational imaging problems. arXiv:2002.10070 [math.NA], 2019. To appear in Adv. Comput. Math.
-
C.-O. LEE, C. NAM, AND J. PARK, Domain decomposition methods using dual conversion for the total variation minimization with
$L^1$ fidelity term, J. Sci. Comput., 78 (2019), pp. 951-970. https://doi.org/10.1007/s10915-018-0791-x -
T. F. CHAN AND S. ESEDOGLU, Aspects of total variation regularized
$L^1$ function approximation, SIAM J. Appl. Math., 65 (2005), pp. 1817-1837. https://doi.org/10.1137/040604297 - A. TIKHONOV, Solution of incorrectly formulated problems and the regularization method, Soviet Math. Dokl., 4 (1963), pp. 1035-1038.
- G. AUBERT AND P. KORNPROBST, Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations, Springer, New York, 2006.
- E. GIUSTI, Minimal Surfaces and Functions of Bounded Variation, Birkhauser, Boston, 1984.
- X. FENG AND A. PROHL, Analysis of total variation flow and its finite element approximations, ESAIM Math. Model. Numer. Anal., 37 (2003), pp. 533-556. https://doi.org/10.1051/m2an:2003041
- A. CHAMBOLLE AND T. POCK, An introduction to continuous optimization for imaging, Acta Numer., 25 (2016), pp. 161-319. https://doi.org/10.1017/S096249291600009X
- Y. MEYER, Oscillating Patterns in Image Processing and Nonlinear Evolution Equations: the Fifteenth Dean Jacqueline B. Lewis Memorial Lectures, vol. 22, American Mathematical Society, Providence, 2001.
- M. NIKOLOVA, A variational approach to remove outliers and impulse noise, J. Math. Imaging Vision, 20 (2004), pp. 99-120. https://doi.org/10.1023/b:jmiv.0000011920.58935.9c
- R. T. ROCKAFELLAR, Convex Analysis, Princeton University Press, New Jersey, 2015.
- I. EKELAND AND R. TEMAM, Convex Analysis and Variational Problems, vol. 28, SIAM, Philadelphia, 1999.
-
Y. DONG, M. HINTERMULLER, AND M. NERI, An efficient primal-dual method for
$L^1$ TV image restoration, SIAM J. Imaging Sci., 2 (2009), pp. 1168-1189. https://doi.org/10.1137/090758490 - K. KUNISCH AND M. HINTERMULLER, Total bounded variation regularization as a bilaterally constrained optimization problem, SIAM J. Appl. Math., 64 (2004), pp. 1311-1333. https://doi.org/10.1137/S0036139903422784
- L. BADEA, X.-C. TAI, AND J. WANG, Convergence rate analysis of a multiplicative Schwarz method for variational inequalities, SIAM J. Numer. Anal., 41 (2003), pp. 1052-1073. https://doi.org/10.1137/S0036142901393607
- X.-C. TAI, Rate of convergence for some constraint decomposition methods for nonlinear variational inequalities, Numer. Math., 93 (2003), pp. 755-786. https://doi.org/10.1007/s002110200404
- J. BOLTE, S. SABACH, AND M. TEBOULLE, Proximal alternating linearized minimization for nonconvex and nonsmooth problems, Math. Program., Ser. A, 146 (2014), pp. 459-494.
- A. CHAMBOLLE, AND T POCK, A remark on accelerated block coordinate descent for computing the proximity operators of a sum of convex functions, SMAI J. Comp. Math., 1 (2015), pp. 29-54. https://doi.org/10.5802/smai-jcm.3
- R. SHEFI AND M. TEBOULLE, On the rate of convergence of the proximal alternating linearized minimization algorithm for convex problems, EURO J. Comput. Optim., 4 (2016), pp. 27-46. https://doi.org/10.1007/s13675-015-0048-5
- A. LANGER AND F. GASPOZ, Overlapping domain decomposition methods for total variation denoising, SIAM J. Numer. Anal., 57 (2019), pp. 1411-1444. https://doi.org/10.1137/18M1173782
- S. BARTELS, Total variation minimization with finite elements: convergence and iterative solution, SIAM J. Numer. Anal., 50 (2012), pp. 1162-1180. https://doi.org/10.1137/11083277X
- M. HERRMANN, R. HERZOG, S. SCHMIDT, J. VIDAL-NUNEZ, AND G. WACHSMUTH, Discrete total variation with finite elements and applications to imaging, J. Math. Imaging Vision, 61 (2019), pp. 411-431. https://doi.org/10.1007/s10851-018-0852-7
- P.-A. RAVIART AND J.-M. THOMAS, A mixed finite element method for 2-nd order elliptic problems, in Mathematical Aspects of Finite Element Methods, Springer, 1977, pp. 292-315.
- I. GOODFELLOW, Y. BENGIO, AND A. COURVILLE, Deep Learning, MIT Press, Cambridge, 2016.
- S. J. WRIGHT, Coordinate descent algorithms, Math. Program., 151 (2015), pp. 3-34. https://doi.org/10.1007/s10107-015-0892-3
- P. L. COMBETTES AND V. R. WAJS, Signal recovery by proximal forward-backward splitting, Multiscale Model. Simul., 4 (2005), pp. 1168-1200. https://doi.org/10.1137/050626090
-
Y. E. NESTEROV, A method for solving the convex programming problem with convergence rate O(1=
$k^2$ ), Dokl. Akad. Nauk SSSR, 269 (1983), pp. 543-547. - B. HE, Y. YOU, AND X. YUAN, On the convergence of primal-dual hybrid gradient algorithm, SIAM J. Imaging Sci., 7 (2014), pp. 2526-2537. https://doi.org/10.1137/140963467
- B. HE AND X. YUAN, Convergence analysis of primal-dual algorithms for a saddle-point problem: from contraction perspective, SIAM J. Imaging Sci., 5 (2012), pp. 119-149. https://doi.org/10.1137/100814494
- R. T. ROCKAFELLAR, Monotone operators and the proximal point algorithm, SIAM J. Control Optim., 14 (1976), pp. 877-898. https://doi.org/10.1137/0314056
- A. CHAMBOLLE, AND T POCK, On the ergodic convergence rates of a first-order primal-dual algorithm, Math. Program., Ser. A, 159 (2016), pp. 253-287. https://doi.org/10.1007/s10107-015-0957-3