References
- K. GARRETT AND H. ROSENBERG, The thermal conductivity of epoxy-resin/powder composite materials, Journal of Physics D: Applied Physics, 7 (1974), p. 1247. https://doi.org/10.1088/0022-3727/7/9/311
- T. BELYTSCHKO, N. MOES, S. USUI, AND C. PARIMI, Arbitrary discontinuities in finite elements, International Journal for Numerical Methods in Engineering, 50 (2001), pp. 993-1013. https://doi.org/10.1002/1097-0207(20010210)50:4<993::AID-NME164>3.0.CO;2-M
- Z. HASHIN, Thin interphase/imperfect interface in elasticity with application to coated fiber composites, Journal of the Mechanics and Physics of Solids, 50 (2002), pp. 2509-2537. https://doi.org/10.1016/S0022-5096(02)00050-9
- A. BUFFA, Remarks on the discretization of some noncoercive operator with applications to heterogeneous maxwell equations, SIAM Journal on Numerical Analysis, 43 (2005), pp. 1-18. https://doi.org/10.1137/S003614290342385X
- Z. CHEN, Reservoir simulation: mathematical techniques in oil recovery, SIAM, 2007.
- H. DUAN AND B. L. KARIHALOO, Effective thermal conductivities of heterogeneous media containing multiple imperfectly bonded inclusions, Physical Review B, 75 (2007), p. 064206. https://doi.org/10.1103/physrevb.75.064206
- F. PAVANELLO, F. MANCA, P. LUCA PALLA, AND S. GIORDANO, Generalized interface models for transport phenomena: Unusual scale effects in composite nanomaterials, Journal of Applied Physics, 112 (2012), p. 084306. https://doi.org/10.1063/1.4759017
- R. PLONSEY, Bioelectric sources arising in excitable fibers (Alza lecture), Annals of biomedical engineering, 16 (1988), pp. 519-546. https://doi.org/10.1007/BF02368014
- M. R. HOSSAN, R. DILLON, AND P. DUTTA, Hybrid immersed interface-immersed boundary methods for ac dielectrophoresis, Journal of Computational Physics, 270 (2014), pp. 640-659. https://doi.org/10.1016/j.jcp.2014.04.012
- G. CHAVENT AND J. JAFFRE, Mathematical models and finite elements for reservoir simulation: single phase, multiphase and multicomponent flows through porous media, Elsevier, 1986.
- C. VAN DUIJN, J. MOLENAAR, AND M. DE NEEF, The effect of capillary forces on immiscible two-phase flow in heterogeneous porous media, Transport in Porous Media, 21 (1995), pp. 71-93. https://doi.org/10.1007/BF00615335
- M. F. WHEELER, An elliptic collocation-finite element method with interior penalties, SIAM Journal on Numerical Analysis, 15 (1978), pp. 152-161. https://doi.org/10.1137/0715010
- B. COCKBURN, G. E. KARNIADAKIS, AND C.-W. SHU, The development of discontinuous Galerkin methods, in Discontinuous Galerkin Methods, Springer, 2000, pp. 3-50.
- D. N. ARNOLD, F. BREZZI, B. COCKBURN, AND L. D. MARINI, Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM journal on numerical analysis, 39 (2002), pp. 1749-1779. https://doi.org/10.1137/S0036142901384162
- A. ERN, I. MOZOLEVSKI, AND L. SCHUH, Discontinuous Galerkin approximation of two-phase flows in heterogeneous porous media with discontinuous capillary pressures, Computer methods in applied mechanics and engineering, 199 (2010), pp. 1491-1501. https://doi.org/10.1016/j.cma.2009.12.014
- N. MOE S, J. DOLBOW, AND T. BELYTSCHKO, A finite element method for crack growth without remeshing, International journal for numerical methods in engineering, 46 (1999), pp. 131-150. https://doi.org/10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
- T. BELYTSCHKO AND T. BLACK, Elastic crack growth in finite elements with minimal remeshing, International journal for numerical methods in engineering, 45 (1999), pp. 601-620. https://doi.org/10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
- P. KRYSL AND T. BELYTSCHKO, An efficient linear-precision partition of unity basis for unstructured meshless methods, Communications in Numerical Methods in Engineering, 16 (2000), pp. 239-255. https://doi.org/10.1002/(SICI)1099-0887(200004)16:4<239::AID-CNM322>3.0.CO;2-W
- T. BELYTSCHKO, C. PARIMI, N. MOES, N. SUKUMAR, AND S. USUI, Structured extended finite element methods for solids defined by implicit surfaces, International journal for numerical methods in engineering, 56 (2003), pp. 609-635. https://doi.org/10.1002/nme.686
- G. LEGRAIN, N. MOES, AND E. VERRON, Stress analysis around crack tips in finite strain problems using the extended finite element method, International Journal for Numerical Methods in Engineering, 63 (2005), pp. 290-314. https://doi.org/10.1002/nme.1291
- Z. LI, T. LIN, AND X. WU, New cartesian grid methods for interface problems using the finite element formulation, Numerische Mathematik, 96 (2003), pp. 61-98. https://doi.org/10.1007/s00211-003-0473-x
- Z. LI, T. LIN, Y. LIN, AND R. C. ROGERS, An immersed finite element space and its approximation capability, Numerical Methods for Partial Differential Equations, 20 (2004), pp. 338-367. https://doi.org/10.1002/num.10092
- S. H. CHOU, D. Y. KWAK, AND K. T. WEE, Optimal convergence analysis of an immersed interface finite element method, Advances in Computational Mathematics, 33 (2010), pp. 149-168. https://doi.org/10.1007/s10444-009-9122-y
-
D. Y. KWAK, K. T. WEE, AND K. S. CHANG, An analysis of a broken
$P_1$ -nonconforming finite element method for interface problems, SIAM Journal on Numerical Analysis, 48 (2010), pp. 2117-2134. https://doi.org/10.1137/080728056 -
D. Y. KWAK AND J. LEE, A modified
$P_1$ -immersed finite element method, International Journal of Pure and Applied Mathematics, 104 (2015), pp. 471-494. -
D. Y. KWAK, S. JIN, AND D. KYEONG, A stabilized
$P_1$ -nonconforming immersed finite element method for the interface elasticity problems, ESAIM: Mathematical Modelling and Numerical Analysis, 51 (2017), pp. 187-207. https://doi.org/10.1051/m2an/2016011 - D. KYEONG AND D. Y. KWAK, An immersed finite element method for the elasticity problems with displacement jump, Advances in Applied Mathematics and Mechanics, 9 (2017), pp. 407-428. https://doi.org/10.4208/aamm.2016.m1427
- S. JIN, D. Y. KWAK, AND D. KYEONG, A consistent immersed finite element method for the interface elasticity problems, Advances in Mathematical Physics, 2016 (2016).
- G. JO AND D. Y. KWAK, An IMPES scheme for a two-phase flow in heterogeneous porous media using a structured grid, Computer Methods in Applied Mechanics and Engineering, (2017).
- D. Y. KWAK, S. LEE, AND H. YUNKYONG, A new finite element for interface problems having robin type jump, Inernational Journal of Numerical Analysis and Modeling, 14 (2017), pp. 532-549.
- M. CROUZEIX AND P. A. RAVIART, Conforming and nonconforming finite element methods for solving the stationary Stokes equations I, Revue francaise d'automatique, informatique, recherche operationnelle. Mathematique, 7 (1973), pp. 33-75.
- S. H. CHOU, D. Y. KWAK, AND K. Y. KIM, Mixed finite volume methods on nonstaggered quadrilateral grids for elliptic problems, Mathematics of computation, 72 (2003), pp. 525-539. https://doi.org/10.1090/S0025-5718-02-01426-6
- K. S. CHANG AND D. Y. KWAK, Discontinuous bubble scheme for elliptic problems with jumps in the solution, Computer Methods in Applied Mechanics and Engineering, 200 (2011), pp. 494-508. https://doi.org/10.1016/j.cma.2010.06.029
- T. LIN, Q. YANG, AND X. ZHANG, A priori error estimates for some discontinuous Galerkin immersed finite element methods, Journal of Scientific Computing, 65 (2015), pp. 875-894. https://doi.org/10.1007/s10915-015-9989-3
- T. LIN, Y. LIN, AND X. ZHANG, Partially penalized immersed finite element methods for elliptic interface problems, SIAM Journal on Numerical Analysis, 53 (2015), pp. 1121-1144. https://doi.org/10.1137/130912700
- J. A. ROITBERG ET AL., A theorem on homeomorphisms for elliptic systems and its applications, Mathematics of the USSR-Sbornik, 7 (1969), p. 439. https://doi.org/10.1070/SM1969v007n03ABEH001099
- J. H. BRAMBLE AND J. T. KING, A finite element method for interface problems in domains with smooth boundaries and interfaces, Advances in Computational Mathematics, 6 (1996), pp. 109-138. https://doi.org/10.1007/bf02127700