DOI QR코드

DOI QR Code

Multi-step Metals Additive Manufacturing Technologies

  • Oh, Ji-Won (Advanced Materials and Process R&D Department, Korea Institute of Industrial Technology) ;
  • Park, Jinsu (Advanced Materials and Process R&D Department, Korea Institute of Industrial Technology) ;
  • Choi, Hanshin (Advanced Materials and Process R&D Department, Korea Institute of Industrial Technology)
  • Received : 2020.06.14
  • Accepted : 2020.06.23
  • Published : 2020.06.28

Abstract

Metal additive manufacturing (AM) technologies are classified into two groups according to the consolidation mechanisms and densification degrees of the as-built parts. Densified parts are obtained via a single-step process such as powder bed fusion, directed energy deposition, and sheet lamination AM technologies. Conversely, green bodies are consolidated with the aid of binder phases in multi-step processes such as binder jetting and material extrusion AM. Green-body part shapes are sustained by binder phases, which are removed for the debinding process. Chemical and/or thermal debinding processes are usually devised to enhance debinding kinetics. The pathways to final densification of the green parts are sintering and/or molten metal infiltration. With respect to innovation types, the multi-step metal AM process allows conventional powder metallurgy manufacturing to be innovated continuously. Eliminating cost/time-consuming molds, enlarged 3D design freedom, and wide material selectivity create opportunities for the industrial adoption of multi-step AM technologies. In addition, knowledge of powders and powder metallurgy fuel advances of multi-step AM technologies. In the present study, multi-step AM technologies are briefly introduced from the viewpoint of the entire manufacturing lifecycle.

Keywords

References

  1. J. Oh, H. Na and H. Choi: J. Korean Powder Metall. Inst., 24 (2017) 494. https://doi.org/10.4150/KPMI.2017.24.6.494
  2. ASTM, F 2792-12a, Standard Terminology for Additive Manufacturing Technologies.
  3. M. M. Matthias: Metal AM, 4 (2018) 159.
  4. ISO/ASTM DIS 52900:2018(E), Additive manufacturing - General principles - Terminology.
  5. J. Oh, S. Nahm, B. Kim and H. Choi: Korean J. Met. Mater., 57 (2019) 227. https://doi.org/10.3365/kjmm.2019.57.4.227
  6. https://www.velo3d.com/products-technology/sapphireprinter/
  7. Q. Sun, G. Rizvi, C. T. Bellehumeur and G. Peihua: Rapid Prototyp. J., 14 (2008) 72. https://doi.org/10.1108/13552540810862028
  8. R. Burnham, J. LaPlante and A. Preston: USA US 10,464,260 (2019).
  9. D. M. Nieto, V. C. López and S. I. Molina: Addit. Manuf., 23 (2018) 79. https://doi.org/10.1016/j.addma.2018.07.012
  10. J. Park, H. Lee and H. Choi: Arch. Metall. Mater., 65 (2020) 1069.
  11. R. K. Enneti, S. J. Park, R. M. German and S. V. Atre: Mater. Manuf. Process., 27 (2012) 103. https://doi.org/10.1080/10426914.2011.560233
  12. Y. Wang and Y. F. Zhao: Procedia Manuf., 10 (2017) 779. https://doi.org/10.1016/j.promfg.2017.07.077
  13. H. Chen and Y. F. Zhao: Rapid Prototyp. J., 22 (2016) 527. https://doi.org/10.1108/RPJ-11-2014-0149
  14. I. Gibson, D. Rosen and B. Stucker: Additive Manufacturing Technologies, Springer, New York, (2015) 205.
  15. P. K. Gurrala and S. P. Regalla: Virtual Phys. Prototyp., 9 (2014) 127. https://doi.org/10.1080/17452759.2014.898851
  16. S. Mirazababaei and S. Pasebani: J. Manuf. Mater. Process., 3 (2019) 1. https://doi.org/10.3390/jmmp3010001
  17. P. Nandwana, A. M. Elliott, D. Siddel, A. Merriman, W. H. Peter and S. S. Babu: Curr. Opin. Solid State. Mater. Sci., 21(4) (2017) 207. https://doi.org/10.1016/j.cossms.2016.12.002
  18. M. T. Stawovy, K. Myers and S. Ohm: Int. J. Refract. Met. Hard Mater., 83 (2019) 104981. https://doi.org/10.1016/j.ijrmhm.2019.104981
  19. C. L. Cramer, P. Nandwana, R. A. Lowden and A. M. Elliott: Addit. Manuf., 28 (2019) 333.
  20. J. M. Molina, R. A. Saravanan, R. Arpon, C. Garcia-Cordovilla, E. Louis and J. Narciso: Acta Mater., 50 (2002) 247. https://doi.org/10.1016/S1359-6454(01)00348-2
  21. M. Doyle, K. Agarwal, W. Sealy and K. Schull: Procedia Manuf., 1 (2015) 251. https://doi.org/10.1016/j.promfg.2015.09.016
  22. M. Schöbel, G. Requena, G. Fiedler, D. Tolnai, S. Vaucher and H. P. Degischer: Compos. Part A Appl. Sci. Manuf., 66 (2014) 103. https://doi.org/10.1016/j.compositesa.2014.07.011
  23. J. Roger, L. Guesnet, A. Marchais and Y. Le Petitcorps: J. Alloys Compd., 747 (2018) 484. https://doi.org/10.1016/j.jallcom.2018.03.024
  24. V. Kumar, E. N. Chibuzo, J. A. Garza-Reyes, A. Kumari, L. Rocha-Lona and G. C. Lopez-Torres: Procedia Manuf., 10 (2017) 935. https://doi.org/10.1016/j.promfg.2017.07.084
  25. A. du Plessis and P. Rossouw: J. Mater. Sci. Technol., 24 (2015) 3137.
  26. Y. Y. Kaplanskii, Z. A. Sentyurina, P. A. Loginov, E. A. Levashov, A. V. Korotitskiy, A. Y. Travyanov and P. V. Petrovskii: Mater. Sci. Eng. A, 743 (2019) 567. https://doi.org/10.1016/j.msea.2018.11.104