DOI QR코드

DOI QR Code

NSM00158 Specifically Disrupts the CtBP2-p300 Interaction to Reverse CtBP2-Mediated Transrepression and Prevent the Occurrence of Nonunion

  • Chen, Xun (Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University) ;
  • Zhang, Wentao (Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University) ;
  • Zhang, Qian (The Department of Surgery Room, Xi'an Daxing Hospital) ;
  • Song, Tao (Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University) ;
  • Yu, Zirui (Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University) ;
  • Li, Zhong (Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University) ;
  • Duan, Ning (Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University) ;
  • Dang, Xiaoqian (Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University)
  • Received : 2020.02.07
  • Accepted : 2020.04.22
  • Published : 2020.06.30

Abstract

Carboxyl-terminal binding proteins (CtBPs) are transcription regulators that control gene expression in multiple cellular processes. Our recent findings indicated that overexpression of CtBP2 caused the repression of multiple bone development and differentiation genes, resulting in atrophic nonunion. Therefore, disrupting the CtBP2-associated transcriptional complex with small molecules may be an effective strategy to prevent nonunion. In the present study, we developed an in vitro screening system in yeast cells to identify small molecules capable of disrupting the CtBP2-p300 interaction. Herein, we focus our studies on revealing the in vitro and in vivo effects of a small molecule NSM00158, which showed the strongest inhibition of the CtBP2-p300 interaction in vitro. Our results indicated that NSM00158 could specifically disrupt CtBP2 function and cause the disassociation of the CtBP2-p300-Runx2 complex. The impairment of this complex led to failed binding of Runx2 to its downstream targets, causing their upregulation. Using a mouse fracture model, we evaluated the in vivo effect of NSM00158 on preventing nonunion. Consistent with the in vitro results, the NSM00158 treatment resulted in the upregulation of Runx2 downstream targets. Importantly, we found that the administration of NSM00158 could prevent the occurrence of nonunion. Our results suggest that NSM00158 represents a new potential compound to prevent the occurrence of nonunion by disrupting CtBP2 function and impairing the assembly of the CtBP2-p300-Runx2 transcriptional complex.

Keywords

References

  1. Birts, C.N., Nijjar, S.K., Mardle, C.A., Hoakwie, F., Duriez, P.J., Blaydes, J.P., and Tavassoli, A. (2013). A cyclic peptide inhibitor of C-terminal binding protein dimerization links metabolism with mitotic fidelity in breast cancer cells. Chem. Sci. 4, 3046-3057. https://doi.org/10.1039/c3sc50481f
  2. Blevins, M.A., Huang, M., and Zhao, R. (2017). The role of CtBP1 in oncogenic processes and its potential as a therapeutic target. Mol. Cancer Ther. 16, 981-990. https://doi.org/10.1158/1535-7163.MCT-16-0592
  3. Blevins, M.A., Kouznetsova, J., Krueger, A.B., King, R., Griner, L.M., Hu, X., Southall, N., Marugan, J.J., Zhang, Q., Ferrer, M., et al. (2015). Small molecule, NSC95397, inhibits the CtBP1-protein partner interaction and CtBP1-mediated transcriptional repression. J. Biomol. Screen. 20, 663-672. https://doi.org/10.1177/1087057114561400
  4. Blevins, M.A., Zhang, C., Zhang, L., Li, H., Li, X., Norris, D.A., Huang, M., and Zhao, R. (2018). CPP-E1A fusion peptides inhibit CtBP-mediated transcriptional repression. Mol. Oncol. 12, 1358-1373. https://doi.org/10.1002/1878-0261.12330
  5. Calori, G.M., Mazza, E.L., Mazzola, S., Colombo, A., Giardina, F., Romano, F., and Colombo, M. (2017). Non-unions. Clin. Cases Miner. Bone Metab. 14, 186-188. https://doi.org/10.11138/ccmbm/2017.14.1.186
  6. Chen, L., Yang, X., Huang, G., Song, D., Ye, X.S., Xu, H., and Li, W. (2013). Platelet-rich plasma promotes healing of osteoporotic fractures. Orthopedics 36, e687-e694. https://doi.org/10.3928/01477447-20130523-10
  7. Chinnadurai, G. (2002). CtBP, an unconventional transcriptional corepressor in development and oncogenesis. Mol. Cell 9, 213-224. https://doi.org/10.1016/S1097-2765(02)00443-4
  8. Chinnadurai, G. (2003). CtBP family proteins: more than transcriptional corepressors. Bioessays 25, 9-12. https://doi.org/10.1002/bies.10212
  9. Chinnadurai, G. (2009). The transcriptional corepressor CtBP: a foe of multiple tumor suppressors. Cancer Res. 69, 731-734. https://doi.org/10.1158/0008-5472.CAN-08-3349
  10. Ding, Z.C., Lin, Y.K., Gan, Y.K., and Tang, T.T. (2018). Molecular pathogenesis of fracture nonunion. J. Orthop. Translat. 14, 45-56. https://doi.org/10.1016/j.jot.2018.05.002
  11. Faiola, F., Liu, X., Lo, S., Pan, S., Zhang, K., Lymar, E., Farina, A., and Martinez, E. (2005). Dual regulation of c-Myc by p300 via acetylation-dependent control of Myc protein turnover and coactivation of Myc-induced transcription. Mol. Cell. Biol. 25, 10220-10234. https://doi.org/10.1128/MCB.25.23.10220-10234.2005
  12. Fjeld, C.C., Birdsong, W.T., and Goodman, R.H. (2003). Differential binding of NAD+ and NADH allows the transcriptional corepressor carboxylterminal binding protein to serve as a metabolic sensor. Proc. Natl. Acad. Sci. U. S. A. 100, 9202-9207. https://doi.org/10.1073/pnas.1633591100
  13. Kawamura, K. and Chung, K.C. (2008). Treatment of scaphoid fractures and nonunions. J. Hand Surg. Am. 33, 988-997. https://doi.org/10.1016/j.jhsa.2008.04.026
  14. Kim, J.H., Cho, E.J., Kim, S.T., and Youn, H.D. (2005). CtBP represses p300-mediated transcriptional activation by direct association with its bromodomain. Nat. Struct. Mol. Biol. 12, 423-428. https://doi.org/10.1038/nsmb924
  15. Lee, J.S., See, R.H., Deng, T., and Shi, Y. (1996). Adenovirus E1A downregulates cJun- and JunB-mediated transcription by targeting their coactivator p300. Mol. Cell. Biol. 16, 4312-4326. https://doi.org/10.1128/MCB.16.8.4312
  16. Lenza, M., Belloti, J.C., Gomes Dos Santos, J.B., Matsumoto, M.H., and Faloppa, F. (2009). Surgical interventions for treating acute fractures or non-union of the middle third of the clavicle. Cochrane Database Syst. Rev. (4), CD007428.
  17. Lenza, M. and Faloppa, F. (2015). Surgical interventions for treating acute fractures or non-union of the middle third of the clavicle. Cochrane Database Syst. Rev. (5), CD007428.
  18. Marsell, R. and Einhorn, T.A. (2011). The biology of fracture healing. Injury 42, 551-555. https://doi.org/10.1016/j.injury.2011.03.031
  19. Morshed, S. (2014). Current options for determining fracture union. Adv. Med. 2014, 708574. https://doi.org/10.1155/2014/708574
  20. Oetgen, M.E., Merrell, G.A., Troiano, N.W., Horowitz, M.C., and Kacena, M.A. (2008). Development of a femoral non-union model in the mouse. Injury 39, 1119-1126. https://doi.org/10.1016/j.injury.2008.04.008
  21. Panteli, M., Pountos, I., Jones, E., and Giannoudis, P.V. (2015). Biological and molecular profile of fracture non-union tissue: current insights. J. Cell. Mol. Med. 19, 685-713. https://doi.org/10.1111/jcmm.12532
  22. Ray, S.K., Li, H.J., Metzger, E., Schule, R., and Leiter, A.B. (2014). CtBP and associated LSD1 are required for transcriptional activation by NeuroD1 in gastrointestinal endocrine cells. Mol. Cell. Biol. 34, 2308-2317. https://doi.org/10.1128/MCB.01600-13
  23. Straza, M.W., Paliwal, S., Kovi, R.C., Rajeshkumar, B., Trenh, P., Parker, D., Whalen, G.F., Lyle, S., Schiffer, C.A., and Grossman, S.R. (2010). Therapeutic targeting of C-terminal binding protein in human cancer. Cell Cycle 9, 3740-3750. https://doi.org/10.4161/cc.9.18.12936
  24. Wen, X., Chen, X., Liang, X., Zhao, H., Li, Y., Sun, X., and Lu, J. (2018). The small molecule NSM00191 specifically represses the TNF-alpha/NF-small ka, CyrillicB axis in foot and ankle rheumatoid arthritis. Int. J. Biol. Sci. 14, 1732-1744. https://doi.org/10.7150/ijbs.24232
  25. Zhang, Q., Yao, H., Vo, N., and Goodman, R.H. (2000). Acetylation of adenovirus E1A regulates binding of the transcriptional corepressor CtBP. Proc. Natl. Acad. Sci. U. S. A. 97, 14323-14328. https://doi.org/10.1073/pnas.011283598
  26. Zhang, W., Duan, N., Zhang, Q., Song, T., Li, Z., Chen, X., and Wang, K. (2018). The intracellular NADH level regulates atrophic nonunion pathogenesis through the CtBP2-p300-Runx2 transcriptional complex. Int. J. Biol. Sci. 14, 2023-2036. https://doi.org/10.7150/ijbs.28302
  27. Zhao, L.J., Subramanian, T., and Chinnadurai, G. (2008). Inhibition of transcriptional activation and cell proliferation activities of adenovirus E1A by the unique N-terminal domain of CtBP2. Oncogene 27, 5214-5222. https://doi.org/10.1038/onc.2008.162

Cited by

  1. Targeting the CtBP1-FOXM1 transcriptional complex with small molecules to overcome MDR1-mediated chemoresistance in osteosarcoma cancer stem cells vol.12, pp.2, 2021, https://doi.org/10.7150/jca.50255