DOI QR코드

DOI QR Code

Operative Treatment for Osteochondral Lesions of the Talus: Bone Marrow Aspirate Concentrate and Matrix-induced Chondrogenesis

거골 골연골병변에 대한 수술적 치료: 골수 흡인물 농축액 및 기질 유래 연골 형성

  • Kim, Bom Soo (Department of Orthopaedic Surgery, Inha University College of Medicine) ;
  • Na, Yeop (Department of Orthopaedic Surgery, Inha University College of Medicine) ;
  • Kwon, Won-Hwan (Department of Orthopaedic Surgery, Inha University Hospital)
  • 김범수 (인하대학교 의과대학 정형외과학교실) ;
  • 나엽 (인하대학교 의과대학 정형외과학교실) ;
  • 권원한 (인하대병원 정형외과)
  • Received : 2020.05.04
  • Accepted : 2020.06.01
  • Published : 2020.06.15

Abstract

Bone marrow aspirate concentrate and matrix-induced chondrogenesis (BMIC) is an interesting treatment option for osteochondral lesions of the talus with promising short- to mid-term results. The various terminologies used to describe this surgical method need to be addressed. These include bone marrow-derived cell transplantation, matrix-induced bone marrow aspirate concentrate, and matrix-associated stem cell transplantation. BMIC is a one-stage, minimally invasive surgery performed arthroscopically or using a mini-open arthrotomy approach without a malleolar osteotomy in most cases. The lesion is replaced with hyaline-like cartilage, and treatmentrelated complications are rare. BMIC is a safe and effective treatment option and should be considered in large lesions or lesions with a prior treatment history.

Keywords

References

  1. Richter M, Zech S, Andreas Meissner S. Matrix-associated stem cell transplantation (MAST) in chondral defects of the 1st metatarsophalangeal joint is safe and effective-2-year-follow-up in 20 patients. Foot Ankle Surg. 2017;23:195-200. doi: 10.1016/j.fas.2016.05.318.
  2. Giannini S, Buda R, Battaglia M, Cavallo M, Ruffilli A, Ramponi L, et al. One-step repair in talar osteochondral lesions: 4-year clinical results and t2-mapping capability in outcome prediction. Am J Sports Med. 2013;41:511-8. doi: 10.1177/0363546512467622.
  3. Yontar NS, Aslan L, Can A, Ogut T. One step treatment of talus osteochondral lesions with microfracture and cell free hyaluronic acid based scaffold combination. Acta Orthop Traumatol Turc. 2019;53:372-5. doi: 10.1016/j.aott.2019.04.002.
  4. Weigelt L, Hartmann R, Pfirrmann C, Espinosa N, Wirth SH. Autologous matrix-induced chondrogenesis for osteochondral lesions of the talus: a clinical and radiological 2- to 8-year follow-up study. Am J Sports Med. 2019;47:1679-86. doi: 10.1177/0363546519841574.
  5. Galla M, Duensing I, Kahn TL, Barg A. Open reconstruction with autologous spongiosa grafts and matrix-induced chondrogenesis for osteochondral lesions of the talus can be performed without medial malleolar osteotomy. Knee Surg Sports Traumatol Arthrosc. 2019;27:2789-95. doi: 10.1007/s00167-018-5063-7.
  6. Usuelli FG, D'Ambrosi R, Maccario C, Boga M, de Girolamo L. Allarthroscopic $AMIC^{(R)}$ (AT-$AMIC^{(R)}$) technique with autologous bone graft for talar osteochondral defects: clinical and radiological results. Knee Surg Sports Traumatol Arthrosc. 2018;26:875-81. doi: 10.1007/s00167-016-4318-4.
  7. Hannon CP, Ross KA, Murawski CD, Deyer TW, Smyth NA, Hogan MV, et al. Arthroscopic bone marrow stimulation and concentrated bone marrow aspirate for osteochondral lesions of the talus: a case-control study of functional and magnetic resonance observation of cartilage repair tissue outcomes. Arthroscopy. 2016;32:339-47. doi: 10.1016/j.arthro.2015.07.012.
  8. Murphy EP, McGoldrick NP, Curtin M, Kearns SR. A prospective evaluation of bone marrow aspirate concentrate and microfracture in the treatment of osteochondral lesions of the talus. Foot Ankle Surg. 2019;25:441-8. doi: 10.1016/j.fas.2018.02.011.
  9. Giannini S, Buda R, Vannini F, Cavallo M, Grigolo B. One-step bone marrow-derived cell transplantation in talar osteochondral lesions. Clin Orthop Relat Res. 2009;467:3307-20. doi: 10.1007/s11 999-009-0885-8.
  10. Sadlik B, Kolodziej L, Puszkarz M, Laprus H, Mojzesz M, Whyte GP. Surgical repair of osteochondral lesions of the talus using biologic inlay osteochondral reconstruction: clinical outcomes after treatment using a medial malleolar osteotomy approach compared to an arthroscopically-assisted approach. Foot Ankle Surg. 2019;25:449-56. doi: 10.1016/j.fas.2018.02.010.
  11. Eren TK, Ataoglu MB, Eren A, Geylan DE, Oner AY, Kanatli U. Comparison of arthroscopic microfracture and cell-free scaffold implantation techniques in the treatment of talar osteochondral lesions. Eklem Hastalik Cerrahisi. 2019;30:97-105. doi: 10.5606/ehc.2019.64401.
  12. Vannini F, Cavallo M, Ramponi L, Castagnini F, Massimi S, Giannini S, et al. Return to sports after bone marrow-derived cell transplantation for osteochondral lesions of the talus. Cartilage. 2017;8:80-7. doi: 10.1177/1947603516642574.
  13. D'Ambrosi R, Villafane JH, Indino C, Liuni FM, Berjano P, Usuelli FG. Return to sport after arthroscopic autologous matrix-induced chondrogenesis for patients with osteochondral lesion of the talus. Clin J Sport Med. 2019;29:470-5. doi: 10.1097/JSM.0000000000000560.
  14. Richter M, Zech S. Matrix-associated stem cell transplantation (MAST) in chondral defects of foot and ankle is effective. Foot Ankle Surg. 2013;19:84-90. doi: 10.1016/j.fas.2012.11.005.
  15. Murphy EP, Fenelon C, Egan C, Kearns SR. Matrix-associated stem cell transplantation is successful in treating talar osteochondral lesions. Knee Surg Sports Traumatol Arthrosc. 2019;27:2737-43. doi: 10.1007/s00167-019-05452-z.
  16. Benthien JP, Behrens P. Autologous matrix-induced chondrogenesis (AMIC): combining microfracturing and a collagen I/III matrix for articular cartilage resurfacing. Cartilage. 2010;1:65-8. doi: 10.1177/1947603509360044.
  17. Volz M, Schaumburger J, Frick H, Grifka J, Anders S. A randomized controlled trial demonstrating sustained benefit of Autologous Matrix-Induced Chondrogenesis over microfracture at five years. Int Orthop. 2017;41:797-804. doi: 10.1007/s00264-016-3391-0.
  18. Buda R, Vannini F, Castagnini F, Cavallo M, Ruffilli A, Ramponi L, et al. Regenerative treatment in osteochondral lesions of the talus: autologous chondrocyte implantation versus one-step bone marrow derived cells transplantation. Int Orthop. 2015;39:893-900. doi: 10.1007/s00264-015-2685-y.
  19. Buda R, Castagnini F, Cavallo M, Ramponi L, Vannini F, Giannini S. "One-step" bone marrow-derived cells transplantation and joint debridement for osteochondral lesions of the talus in ankle osteoarthritis: clinical and radiological outcomes at 36 months. Arch Orthop Trauma Surg. 2016;136:107-16. doi: 10.1007/s00402-015-2344-1.
  20. Desando G, Bartolotti I, Vannini F, Cavallo C, Castagnini F, Buda R, et al. Repair potential of matrix-induced bone marrow aspirate concentrate and matrix-induced autologous chondrocyte implantation for talar osteochondral repair: patterns of some catabolic, inflammatory, and pain mediators. Cartilage. 2017;8:50-60. doi: 10.1177/1947603516642573.
  21. Richter M, Zech S. Matrix-associated stem cell transplantation (MAST) in chondral lesions at the ankle as part of a complex surgical approach- 5-year-follow-up in 100 patients. Foot Ankle Surg. 2019;25:264-71. doi: 10.1016/j.fas.2017.11.004.
  22. Sadlik B, Kolodziej L, Blasiak A, Szymczak M, Warchal B. Biological reconstruction of large osteochondral lesions of the talar dome with a modified "sandwich" technique-Midterm results. Foot Ankle Surg. 2017;23:290-5. doi: 10.1016/j.fas.2016.09.001.
  23. Chen H, Hoemann CD, Sun J, Chevrier A, McKee MD, Shive MS, et al. Depth of subchondral perforation influences the outcome of bone marrow stimulation cartilage repair. J Orthop Res. 2011;29:1178-84. doi: 10.1002/jor.21386.
  24. Wang D, Shen Z, Fang X, Jiao C, Guo Q, Hu Y, et al. Vascular compromising effect of drilling for osteochondral lesions of the talus: a three-dimensional micro-computed tomography study. Arthroscopy. 2019;35:2930-7. doi: 10.1016/j.arthro.2019.05.021.