DOI QR코드

DOI QR Code

Effect of Joint Geometry on Anisotropic Deformability of Jointed Rock Masses

절리의 기하학적 속성이 절리성 암반의 이방적 변형 특성에 미치는 영향

  • Ryu, Seongjin (Dept. of Energy Resources Engineering, Pukyong National University) ;
  • Um, Jeong-Gi (Dept. of Energy Resources Engineering, Pukyong National University)
  • 류성진 (부경대학교 에너지자원공학과) ;
  • 엄정기 (부경대학교 에너지자원공학과)
  • Received : 2020.05.19
  • Accepted : 2020.06.02
  • Published : 2020.06.28

Abstract

In this study, a numerical experiment related to the stress-strain analysis was performed on 3-D discrete fracture network(DFN) systems based on the distinct element method to evaluate the effect of joint geometry on deformability of jointed rock masses. Using one or two joint sets with deterministic orientation, a total of 12 3-D DFN blocks having 10m cube domain were generated with different joint density and size distribution. Directional deformation modulus of the DFN cube blocks were estimated along the axis directions of 3-D cartesian coordinate. In addition, deviatoric stress directions were chosen at every 30° of trend and plunge in 3-D for some DFN blocks to examine the variability of directional deformation modulus with respect to joint geometry. The directional deformation modulus of the DFN block were found to reduce with the increase of joint size distribution. The increase in joint density was less likely to have a significant effect on directional deformation modulus of the DFN block in case of the effect of rock bridges was relatively large because of short joint size distribution. It, however, was evaluated that the longer the joint size, the increase in the joint density had a more significant effect on the anisotropic deformation modulus of the DFN block. The variation of the anisotropic deformation modulus according to the variations in joint density and size distribution was highly dependent on the number of joint sets and their orientation in the DFN block. Finally, this study addressed a numerical procedure for stress-strain analysis of jointed rock masses considering joint geometry and discussed a methodology for practical application at the field scale.

본 연구는 절리의 기하학적 속성이 절리성 암반의 변형 특성에 미치는 영향을 평가하기 위하여 삼차원 불연속절리망(DFN; discrete fracture network) 시스템에 대한 개별요소법 기반의 응력-변형 해석과 관련된 수치실험을 수행하였다. 1~2 개의 확정적 방향성을 갖는 절리군을 사용하여 절리의 빈도와 길이분포를 달리하며 추계론적으로 생성한 총 12개의 1000㎥ 정육면체 DFN 블록에 대하여 삼차원 직교좌표계의 축 방향에 따른 변형계수가 산정되었다. 또한, 일부 DFN 블록은 삼차원상에서 매 30° 간격의 선주향 및 선경사 방향을 축차응력 방향으로 설정하고 변형계수를 산정하였다. 절리의 길이가 증가할수록 DFN 블록의 변형계수는 더욱 저감되는 것으로 평가되었다. 절리의 빈도 증가는 절리의 길이가 짧아서 상대적으로 암교 효과가 큰 경우 DFN 블록의 변형계수 저감에 유의미한 영향을 미치지 못 할 가능성도 있지만 절리길이가 길수록 절리빈도의 증가가 DFN의 이방적 변형계수에 지대한 영향을 미치는 것으로 평가되었다. 절리의 길이와 빈도 변화에 따른 이방적 변형계수의 변화는 DFN에 분포하는 절리군의 개수 및 방향성에 크게 좌우된다. DFN 블록의 변형 특성은 삼차원상의 방향에 따라 다르게 발현되는 것으로 평가되었다. 마지막으로 본 연구는 절리의 기하학적 속성이 고려된 응력-변형 해석을 위한 수치해석 절차를 제시하였으며 현장규모의 실무 적용을 위한 방법론에 대하여 토의하였다.

Keywords

References

  1. Bieniawski, Z. T. (1968) The effect of specimen size on compressive strength of coal. Int. J. Rock Mech. Min. Sci., v.5, p.321-335. https://doi.org/10.1016/0148-9062(68)90004-1
  2. Bieniawski, Z. T. (1978) Determining rock mass deformability: experience from case histories. Int. J. Rock Mech. Min. Sci., v.15, p.237-247. https://doi.org/10.1016/0148-9062(78)90956-7
  3. Bieniawski, Z. T. and Van Heerden, W. L. (1975) The significance of in-situ tests on large rock specimens. Int. J. Rock Mech. Min. Sci., v.12, p.101-113. https://doi.org/10.1016/0148-9062(75)90004-2
  4. Castelli, M., Saetta, V. and Scavia, C. (2003) Numerical study of scale effects on the stiffness modulus of rock masses. Int. J. Geomech., v.3, p.160-169. https://doi.org/10.1061/(ASCE)1532-3641(2003)3:2(160)
  5. Chalhoub, M. and Pouya, A. (2008) Numerical homogenization of a fractured rock mass: A geometrical approach to determine the mechanical Representative Elementary Volume. Electronic Journal of Geotechnical Engineering, v.13, p.1-12.
  6. Cundall, P. A. (1971) A computer model for simulating progressive large-scale movements in blocky rock system. Proc. Symp. Int. Soc. Rock Mechanics, Nancy, France, v.2, p.2-8.
  7. Cundall, P. A. (1988) Formulation of a three-dimensional distinct element model-Part I. A scheme to detect and represent contacts in a system composed of many polyhedral blocks. Int. J. Rock Mech. Min. Sci., v.25, p.107-116. https://doi.org/10.1016/0148-9062(88)92293-0
  8. Hardin, E. L., Barton, N. R., Lingle, R., Board, M. P. and voegele, M. D. (1982) A heated flatjack test to measure the thermomechanical and transport properties of rock masses. Office of Nuclear Waste Isolation, Columbus, Ohio, 203p.
  9. Harrison, J. P. and Hudson, J. A. (1997) Engineering rock mechanics-an introduction to the principles. Oxford. Elsevier. 444p.
  10. Hart, R., Cundall, P. A. and Lemos, J. (1988) Formulation of a three-dimensional distinct element model-Part II: Mechanical calculation for motion and interaction of a system composed of many polyhedral blocks. Int. J. Rock Mech. Min. Sci., v.25, p.117-126.
  11. Hoek, E. and Diederichs, M.S. (2006) Empirical estimation of rock mass modulus. Int. J. Rock Mech. Min. Min. Sci., v.43, p.203-215. https://doi.org/10.1016/j.ijrmms.2005.06.005
  12. Itasca (2016) 3DEC(v.5.2) User's Guide. Itasca Consulting Group, Inc.
  13. Kulatilake, P. H. S. W., Ucpirti, H., Wang, S., Radberg, G. and Stephansson O. (1992) Use of the distinct element method to perform stress analysis in rock with nonpersistent joints to study the effect of joint geometry parameters on the strength and deformability of rock masses. Rock Mech. Rock Eng., v.25, p.253-274 https://doi.org/10.1007/BF01041807
  14. Laghaeia, M., Baghbanana, A., Hashemolhosseinib, H. and Dehghanipoodeha, M. (2018) Numerical determination of deformability and strength of 3D fractured rock mass. Int. J. Rock Mech. Min. Min. Sci., v.110, p.246-256. https://doi.org/10.1016/j.ijrmms.2018.07.015
  15. Lemos, J. V., Hart, R. D. and Cundall, P. A. (1985) A generalized distinct element program for modeling jointed rock mass. Proc. Int. Symp. Fund. Rock Joints, Bjorkliden, Sweden, p.335-343.
  16. Pouya, A. and Ghoreychi, M. (2001) Determination of rock mass strength properties by homogenization. Int. J. Numer Anal. Methods, v.25, p.1285-1303. https://doi.org/10.1002/nag.176
  17. Pratt, H. R., Black A. D., Brown, W. S. and Brace, W. F. (1972) The effect of specimen size on the mechanical properties of unjointed diorite. Int. J. Rock Mech. Min. Sci., v.9, p.519-529.
  18. Ryu, S., Um, J. G. and Park, J. (2020) Estimation of strength and deformation modulus of the 3-D DFN system using the distinct element method. Tunnel & Underground Space, v.30, p.15-28. https://doi.org/10.7474/TUS.2020.30.1.015
  19. Wang, S. and Kulatilake, P. H. S. W. (1993) Linking between joint geometry models and a distinct element method in three dimensions to perform stress analyses in rock masses containing finite size joints. Jpn. Soc. Soil Mech. Found Eng., v.33, p.88-98.
  20. Zhang, L. (2017) Evaluation of rock mass deformability using empirical methods-a review. Undergr Space., v.2, p.1-15. https://doi.org/10.1016/j.undsp.2017.03.003