DOI QR코드

DOI QR Code

Anti-inflammatory effect of Malus domestica cv. Green ball apple peel extract on Raw 264.7 macrophages

  • Lee, Eun-Ho (School of Food science & Biotechnology, Kyungpook National University) ;
  • Park, Hye-Jin (School of Food science & Biotechnology, Kyungpook National University) ;
  • Kim, Byung-Oh (School of Food science & Biotechnology, Kyungpook National University) ;
  • Choi, Hyong-Woo (Department of Plant Medicals, Andong National University) ;
  • Park, Kyeung-Il (Department of Horticulture and Life Science, Yeungnam University) ;
  • Kang, In-Kyu (Department of Horticultural Science, Kyungpook National University) ;
  • Cho, Young-Je (School of Food science & Biotechnology, Kyungpook National University)
  • 투고 : 2020.02.05
  • 심사 : 2020.03.17
  • 발행 : 2020.06.30

초록

We examined the anti-inflammatory effect of the peel extract of the newly bred Korean apple (Malus domestica Borkh.) cultivar Green ball. To test its possible use as anti-inflammatory functional material, Raw 264.7 macrophages were treated with pro-inflammatory lipopolysaccharide (LPS) in the presence or absence of Green ball apple peel ethanol extract (GBE). Notably, up to 500 ㎍/mL of GBE did not result in any signs of inhibition on cellular metabolic activity or cytotoxicity in Raw 264.7 macrophages. Supplementation with GBE to LPS-treated Raw 264.7 macrophage significantly suppressed various pro-inflammatory responses in a dose-dependent manner, including i) nitric oxide (NO) production, ii) accumulation of inducible NO synthase and cyclooxygenase-2, iii) phosphorylation of nuclear factor-kappa B (NF-κB) subunit p65, and iv) expression of pro-inflammatory biomarker genes, including tumor necrosis factor alpha, interleukin 1 beta, interleukin 6, monocyte chemoattractant protein-1, and prostaglandin E synthase 2.

키워드

참고문헌

  1. Lee EH, Kim YJ, Kwon SI, Kim JH, Kang IK, Kim BO, Cho YJ (2018) Functional properties of newly bred Green ball apple (Malus pumila Mill.). Kor J Food Preserv 25: 837-845 https://doi.org/10.11002/kjfp.2018.25.7.837
  2. Yun HJ, Lim SY, Hur JM, Jeong JW, Yang SH, Kim DH (2007) Changes of functional compounds in, and texture characteristics of, apples, during post-irradiation storage at different temperatures. Kor J Food Preserv 14: 239-246
  3. Kwon OJ (2016) Antioxidant and tyrosinase inhibitory activities of immature fruits of Malus pumila cv. Fuji. Kor J Food Preserv 23: 585-590 https://doi.org/10.11002/KJFP.2016.23.4.585
  4. Yoon Y, Bae S, An S, Choe YB, Ahn KJ, An IS (2013) Effects of ultraviolet radiation on the skin and skin cell signaling pathways. Asia J Beauty Cosmet 11: 417-426
  5. Lee HY, Kim GJ, Kim YS, Lee SN, Lee SO (2007) Skin science. Koonja Publisher, Paju, Korea. pp 20-24
  6. Kim J, Lee CW, Kim EK, Lee SJ, Park NH, Kim HS, Kim HK, Char K, Jang YP, Kim JW (2011) Inhibition effect of Gynura procumbens extract on UV-B-induced matrix-metalloproteinase expression in human dermal fibroblasts. J Ethnopharm 137: 427-433 https://doi.org/10.1016/j.jep.2011.04.072
  7. Lundberg IE (2000) The role of cytokines, chemokines and adhesion molecules in the pathogenesis of idiopathic inflammatory myopathies. Curr Rheumat Rep 2(3): 216-224 https://doi.org/10.1007/s11926-000-0082-y
  8. EI-Mahmoudy A, Matsuyama H, Brogan MA, Shimizu Y, EI-Sayed MG, Minamoto N, Takewaki T (2002) Thymoquinone suppress expression of inducible nitric oxide synthesis in rat macrophage. Inter Immunopharm 2(11): 1603-1611 https://doi.org/10.1016/S1567-5769(02)00139-X
  9. Gilroy DW, Lawrence T, Perretti M, Rossi AG (2004) Inflammatory resolution: new opportunities for drug discovery. Nat Rev Drug Discov 3: 401-416 https://doi.org/10.1038/nrd1383
  10. Kim SN, Lee CM, Lee SH, Kim YC (2013) Inhibitory efficacy of watersoluble extracts from green, white and black teas on MMP-2 activity and MMP-1 gene expression in human dermal fibroblasts. J Invest Cosmet 9: 21-26 https://doi.org/10.15810/jic.2013.9.1.004
  11. Claude S, Manabu K, Laura M, Lester P (1999) Antioxidants modulate acute solar ultraviolet radiation-induced NF-kappa-B activation in a human keratinocyte cell line. Free Radic Biol Med 26: 174-183 https://doi.org/10.1016/S0891-5849(98)00212-3
  12. Gloire G, Legrand-Poels S, Piette J (2006) NF-${\kappa}B$ activation by reactive oxygen species: fifteen years later. Biochem Pharmacol 72: 1493-1505 https://doi.org/10.1016/j.bcp.2006.04.011
  13. Lee KH, Rhee KH (2015) Screening of anti-inflammatory herbs having the activation of MAPK family proteins. Kor J Food Nutr 28(3): 343-350 https://doi.org/10.9799/ksfan.2015.28.3.343
  14. Carmichael J, DeGraff WG, Gazdar AF, Minna JD, Mitchell JB (1987) Evaluation of a tetrazolium based semiautomated colorimetric assay: assessment of chemosensitivity testing. Cancer Research 47: 936-942
  15. Zhang D, Zhang H, Lao YZ, Wu R, Xu JW, Murad F, Bian K, Xu HX (2015) Anti-inflammatory effect of 1,3,5,7-tetrahydroxy-8-isoprenylxanthone isolated from twigs of Garcinia esculenta on stimulated macrophage. Mediators Inflamm 2015: 1-11
  16. Aderem A, Ulevitch RJ (2000) Toll-like receptors in the induction of the innate immune response. Nature 406: 782-787 https://doi.org/10.1038/35021228
  17. Dilshara MG, Lee KT, Kim HJ, Lee HJ, Choi YH, Lee CM, Kim LK, Kim GY (2014) Anti-inflammatory mechanism of alphaviniferin regulates lipopolysaccharide-induced release of proinflammatory mediators in BV2 microglial cells. Cell Immunol 290: 21-29 https://doi.org/10.1016/j.cellimm.2014.04.009
  18. Ivashkiv LB (2011) Inflammatory signaling in macrophages: transitions from acute to tolerant and alternative activation states. Eur J Immunol 41: 2477-2481 https://doi.org/10.1002/eji.201141783
  19. Ha U, Lim JH, Jono H, Koga T, Srivastava A, Malley R, Pages G, Pouyssegur J, Li JD (2007) A novel role for IkappaB kinase (IKK) alpha and IKKbeta in ERK-dependent up-regulation of MUC5AC mucin transcription by Streptococcus pneumoniae. J Immunol 178: 1736-1747 https://doi.org/10.4049/jimmunol.178.3.1736
  20. Kim SJ, Um JY, Lee JY (2011) Anti-inflammatory activity of hyperoside through the suppression of nuclear factor-kappaB activation in mouse peritoneal macrophages. Am J Chin Med 39: 171-181 https://doi.org/10.1142/S0192415X11008737
  21. Li Q, Verma IM (2002) NF-kappaB regulation in the immune system. Nat Rev Immunol 2: 725-734 https://doi.org/10.1038/nri910
  22. Takeuchi O, Hoshino K, Kawai T, Sanjo H, Takada H, Ogawa T, Takeda K, Akira S (1999) Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity 11: 443-451 https://doi.org/10.1016/S1074-7613(00)80119-3
  23. Daghigh F, Fukuto JM, Ash DE (1994) Inhibition of rat liver arginase by an intermediate in NO biosynthesis, NG-hydroxy-L-arginine: implications for the regulation of nitric oxide biosynthesis by arginase. Biochem Biophys Res Commun 202(1): 174-180 https://doi.org/10.1006/bbrc.1994.1909
  24. Schlondorff D, Peter JN, Bruno L, Bernhard B (1997) Chemokines and renal disease. Kidney Int 51: 10-11
  25. Wada T, Yokoyama H, Su SB, Mukaida N, Iwano M, Dohi K, Takahashi Y, Sasaki T, Furuichi K, Segawa C, Hisada Y, Ohta S, Takasawa K, Kobayashi KI, Matsushima K (1996) Monitoring urinary levels of monocyte chemotactic and activation factor reflects disease activity of lupus nephritis. Kidney Int 49: 761-767 https://doi.org/10.1038/ki.1996.105
  26. Jin CH, Park YD, Choi DS, Jeong IY (2010) Study on the mechanism of radiation-induced MCP-1 expression in Raw264.7 macrophage cells. J Radiat Ind 4(3): 227-231

피인용 문헌

  1. RAW264.7 대식세포에서 MAPK 및 NF-κB 신호전달 경로 억제를 통한 황기 및 지치 복합물의 항염증 효과 vol.63, pp.4, 2020, https://doi.org/10.3839/jabc.2020.055
  2. Antioxidant, Anti-Inflammatory, and Cytotoxic Activity of Extracts from Some Commercial Apple Cultivars in Two Colorectal and Glioblastoma Human Cell Lines vol.10, pp.7, 2020, https://doi.org/10.3390/antiox10071098