DOI QR코드

DOI QR Code

슁글드 모듈 제작을 위한 고효율 실리콘 태양전지의 레이저 스크라이빙에 의한 영향

Effect of Laser Scribing in High Efficiency Crystal Photovoltaic Cells to Produce Shingled Photovoltaic Module

  • 이성은 (성균관대학교 화학공학/고분자공학부) ;
  • 박지수 (성균관대학교 전자전기컴퓨터공학과) ;
  • 오원제 (성균관대학교 전자전기컴퓨터공학과) ;
  • 이재형 (성균관대학교 전자전기컴퓨터공학과)
  • Lee, Seong Eun (School of Chemical Engineering, Sungkyunkwan University) ;
  • Park, Ji Su (Department of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Oh, Won Je (Department of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Lee, Jae Hyeong (Department of Electrical and Computer Engineering, Sungkyunkwan University)
  • 투고 : 2020.01.28
  • 심사 : 2020.03.09
  • 발행 : 2020.07.01

초록

The high power of a shingled photovoltaic module can be attributed to its low cell-to-module loss. The production of high power modules in limited area requires high efficiency solar cells. Shingled photovoltaic modules can be made by divided solar cells, which can be produced by the laser scribing process. After dividing the 21% PERC cell using laser scribing, the efficiency decreased by approximately 0.35%. However, there was no change in the efficiency of the solar cell having relatively lower efficiency, because the laser scribing process induce higher heat damages in solar cells with high efficiency. To prove this phenomena, the J0 (leakage current density) of each cell was analyzed. It was found that the J0 of 21% PERC increased about 17 times between full and divided solar cell. However, the J0 of 20.2% PERC increased only about 2.5 times between full and divided solar cell.

키워드

참고문헌

  1. A. McEvoy, L. Castaner, and T. Markvart, Solar Cells: Materials, Manufacture and Operation. 2nd Edition (Elsevier Ltd., Oxford, 2012) p. 3.
  2. P. C. Choubey, A. Oudhia, and R. Dewangan, Recent Res. Sci. Technol., 4, 99 (2012).
  3. M. T. Zarmai, N. N. Ekere, C. F. Oduoza, and E. H. Amalu, Appl. Energy, 154, 173 (2015). [DOI: https://doi.org/10.1016/j.apenergy.2015.04.120]
  4. M. Mittag, T. Zech, M. Wiese, D. Blasi, M. Ebert, and H. Wirth, 2017 IEEE 44th Photovoltaic Specialist Conference (PVSC) (IEEE, Washington, USA, 2017) p. 1531. [DOI: https://doi.org/10.1109/PVSC.2017.8366260]
  5. J. Zhao, A. Wang, E. Abbaspour-Sani, F. Yun, and M. A. Green, IEEE Electron Device Lett., 18, 48 (1997). [DOI: https://doi.org/10.1109/55.553040]
  6. F. Ye, W. Deng, W. Guo, R. Liu, D. Chen, Y. Chen, Y. Yang, N. Yuan, J. Ding, Z. Feng, P. P. Altermatt, and P. J. Verlinden, Proc. 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC) (IEEE, Portland, USA, 2016) p. 3360. [DOI: https://doi.org/10.1109/PVSC.2016.7750289]
  7. M. Rudolph, C. Kruse, H. Wolter, B. Wolpensinger, U. Baumann, S. Braunig, M. Ripke, T. Falcon, R. Brendel, and T. Dullweber, AIP Conf. Proc., 2147, 060001 (2019). [DOI: https://doi.org/10.1063/1.5123861]
  8. A. W. Blakers, A. Wang, A. M. Milne, J. Zhao, and M. A. Green, Appl. Phys. Lett., 55, 1363 (1989). [DOI: https://doi.org/10.1063/1.101596]
  9. S. Eiternick, F. Kaule, H. U. Zuhlke, T. Kiessling, M. Grimm, S. Schoenfelder, and M. Turek, Energy Procedia, 77, 340 (2015). [DOI: https://doi.org/10.1016/j.egypro.2015.07.048]
  10. S. W. Glunz, Sol. Energy Mater. Sol. Cells, 90, 3276 (2006). [DOI: https://doi.org/10.1016/j.solmat.2005.09.019]
  11. S. Eiternick, K. Kaufmann, J. Schneider, and M. Turek, Energy Procedia, 55, 326 (2014). [DOI: https://doi.org/10.1016/j.egypro.2014.08.094]
  12. H. Ahmed, J. Doran, and S. J. McCormack, Sol. Energy, 126, 146 (2016). [DOI: https://doi.org/10.1016/j.solener.2016.01.003]
  13. R. A. Sinton and A. Cuevas, Appl. Phys. Lett., 69, 2510 (1996). [DOI: https://doi.org/10.1063/1.117723]