DOI QR코드

DOI QR Code

Experimental Animal Models for Meniere's Disease: A Mini-Review

  • Seo, Young Joon (Department of Otorhinolaryngology, Yonsei University Wonju College of Medicine) ;
  • Brown, Daniel (School of Pharmacy and Biomedical Sciences, Curtin University)
  • Received : 2020.03.06
  • Accepted : 2020.03.10
  • Published : 2020.04.20

Abstract

Several novel animal models that represent the pathophysiological process of endolymphatic hydrops (ELH) of Meniere's disease (MD) have been developed. Animal models are important to identify and characterize the pathophysiology of ELH and to corroborate molecular and genetic findings in humans. This review of the current animal models will be useful in understanding the pathophysiology of and developing proper treatments for MD. Surgical animal models will be replaced by medication-induced animal models. Study models previously developed in guinea pigs will be developed in several smaller animals for ease of conducting molecular analysis. In this review, we provided updated resources including our previous studies regarding the current and desirable animal models for MD.

Keywords

References

  1. Pearson WP, Brackmann DE. Committee on Hearing and Equilibrium: Committee on Hearing and Equilibrium guidelines for the diagnosis and evaluation of therapy in Meniere's disease. Otolaryngol Head Neck Surg 1995;113:181-5. https://doi.org/10.1016/S0194-5998(95)70102-8
  2. Oberman BS, Patel VA, Cureoglu S, Isildak H. The aetiopathologies of Meniere's disease: a contemporary review. Acta Otorhinolaryngol Ital 2017;37:250-63. https://doi.org/10.14639/0392-100X-793
  3. Salt AN, Plontke SK. Endolymphatic hydrops: pathophysiology and experimental models. Otolaryngol Clin North Am 2010;43:971-83. https://doi.org/10.1016/j.otc.2010.05.007
  4. Brown DJ, Chihara Y, Curthoys IS, Wang Y, Bos M. Changes in cochlear function during acute endolymphatic hydrops development in guinea pigs. Hear Res 2013;296:96-106. https://doi.org/10.1016/j.heares.2012.12.004
  5. Kim M, Kim KS. Vestibular function change in a vasopressin-induced hydrops model. Otol Neurotol 2017;38:e495-500. https://doi.org/10.1097/MAO.0000000000001574
  6. Kimura RS, Schuknecht HF. Membranous hydrops in the inner ear of the guinea pig after obliteration of the endolymphatic sac. Pract Otorhinolaryngol (Basel) 1965;27:343-54.
  7. Liu H, Zhou K, Zhang X, Peng KA. Fluctuating sensorineural hearing loss. Audiology and Neurotology 2019;24:109-16. https://doi.org/10.1159/000500658
  8. Kimura RS, Schuknecht HF. Effect of fistulae on endolymphatic hydrops. Ann Otol Rhinol Laryngol 1975;84(3 Pt 1):271-86. https://doi.org/10.1177/000348947508400301
  9. Takeda T, Takeda S, Kitano H, Okada T, Kakigi A. Endolymphatic hydrops induced by chronic administration of vasopressin. Hear Res 2000;140:1-6. https://doi.org/10.1016/S0378-5955(99)00180-X
  10. Chihara Y, Wong C, Curthoys IS, Brown DJ. The effect of systemic administration of desmopressin on cochlear function in guinea pigs. Acta Otolaryngol 2013;133:676-84. https://doi.org/10.3109/00016489.2013.771282
  11. Tian Q, Linthicum FH Jr, Keithley EM. Application of labeling techniques to archival temporal bone sections. Ann Otol Rhinol Laryngol 1999;108:47-53. https://doi.org/10.1177/000348949910800107
  12. Lopez IA, Ishiyama G, Hosokawa S, Hosokawa K, Acuna D, Linthicum FH, et al. Immunohistochemical techniques for the human inner ear. Histochem Cell Biol 2016;146:367-87. https://doi.org/10.1007/s00418-016-1471-2
  13. Hofman R, Segenhout JM, Wit HP. A bast-like valve in the pigeon? Eur Arch Otorhinolaryngol 2009;266:1397-401. https://doi.org/10.1007/s00405-009-0934-7
  14. Agrawal Y, Minor LB. Physiologic effects on the vestibular system in Meniere's disease. Otolaryngol Clin North Am 2010;43:985-93. https://doi.org/10.1016/j.otc.2010.05.002
  15. Derebery MJ. Allergic and immunologic features of Meniere's disease. Otolaryngol Clin North Am 2011;44:655-66. https://doi.org/10.1016/j.otc.2011.03.004
  16. Schuknecht HF, Gulya AJ. Endolymphatic hydrops: an overview and classification. Ann Otol Rhinol Laryngol 1983;92(5 Suppl):1-20. https://doi.org/10.1177/00034894830920S501
  17. Gibson WP. Hypothetical mechanism for vertigo in Meniere's disease. Otolaryngol Clin North Am 2010;43:1019-27. https://doi.org/10.1016/j.otc.2010.05.013
  18. Aoki M, Ando K, Kuze B, Mizuta K, Hayashi T, Ito Y. The association of antidiuretic hormone levels with an attack of Meniere's disease. Clin Otolaryngol 2005;30:521-5. https://doi.org/10.1111/j.1749-4486.2005.01107.x
  19. Kitahara T, Doi K, Maekawa C, Kizawa K, Horii A, Kubo T, et al. Meniere's attacks occur in the inner ear with excessive vasopressin type-2 receptors. J Neuroendocrinol 2008;20:1295-300. https://doi.org/10.1111/j.1365-2826.2008.01792.x
  20. Wangemann P, Liu J, Shimozono M, Schimanski S, Scofield MA. K+ secretion in strial marginal cells is stimulated via beta 1-adrenergic receptors but not via beta 2-adrenergic or vasopressin receptors. J Membr Biol 2000;175:191-202. https://doi.org/10.1007/s002320001067
  21. Derebery MJ, Berliner KI. Prevalence of allergy in Meniere's disease. Otolaryngol Head Neck Surg 2000;123(1 Pt 1):69-75. https://doi.org/10.1067/mhn.2000.105715
  22. Bovo R, Ciorba A, Martini A. Vertigo and autoimmunity. Eur Arch Otorhinolaryngol 2010;267:13-9. https://doi.org/10.1007/s00405-009-1122-5
  23. Derebery MJ, Rao VS, Siglock TJ, Linthicum FH, Nelson RA. Meniere's disease: an immune complex-mediated illness? Laryngoscope 1991;101:225-9.
  24. Brown DJ, Sokolic L, Fung A, Pastras CJ. Response of the inner ear to lipopolysaccharide introduced directly into scala media. Hear Res 2018;370:105-12. https://doi.org/10.1016/j.heares.2018.10.007
  25. Fung K, Xie Y, Hall SF, Lillicrap DP, Taylor SA. Genetic basis of familial Meniere's disease. J Otolaryngol 2002;31:1-4. https://doi.org/10.2310/7070.2002.19261
  26. Teggi R, Lanzani C, Zagato L, Delli Carpini S, Manunta P, Bianchi G, et al. Gly460Trp alpha-adducin mutation as a possible mechanism leading to endolymphatic hydrops in Meniere's syndrome. Otol Neurotol 2008;29:824-8. https://doi.org/10.1097/MAO.0b013e318180a4b1
  27. Lopez-Escamez JA, Saenz-Lopez P, Acosta L, Moreno A, Gazquez I, Perez-Garrigues H, et al. Association of a functional polymorphism of PTPN22 encoding a lymphoid protein phosphatase in bilateral Meniere's disease. Laryngoscope 2010;120:103-7. https://doi.org/10.1002/lary.20650
  28. Dunnebier EA, Segenhout JM, Wit HP, Albers FW. Two-phase endolymphatic hydrops: a new dynamic guinea pig model. Acta Otolaryngol 1997;117:13-9.
  29. Egami N, Kakigi A, Sakamoto T, Takeda T, Hyodo M, Yamasoba T. Morphological and functional changes in a new animal model of Meniere's disease. Lab Invest 2013;93:1001-11. https://doi.org/10.1038/labinvest.2013.91
  30. Egami N, Kakigi A, Takeda T, Yamasoba T. Dehydration effects of a V2 antagonist on endolymphatic hydrops in guinea pigs. Hear Res 2016;332:151-9. https://doi.org/10.1016/j.heares.2015.12.017
  31. Degerman E, In't Zandt R, Palbrink AK, Magnusson M. Vasopressin induces endolymphatic hydrops in mouse inner ear, as evaluated with repeated 9.4 T MRI. Hear Res 2015;330(Pt A):119-24. https://doi.org/10.1016/j.heares.2015.05.008
  32. Katagiri Y, Takumida M, Hirakawa K, Anniko M. Long-term administration of vasopressin can cause Meniere's disease in mice. Acta Otolaryngol 2014;134:990-1004. https://doi.org/10.3109/00016489.2014.902989
  33. Francis F, Hennig S, Korn B, Reinhardt R, De Jong P, Poustka A, et al. A gene (PEX) with homologies to endopeptidases is mutated in patients with X-linked hypophosphatemic rickets. Nat Genet 1995;11:130-6. https://doi.org/10.1038/ng1095-130
  34. Megerian CA, Semaan MT, Aftab S, Kisley LB, Zheng QY, Pawlowski KS, et al. A mouse model with postnatal endolymphatic hydrops and hearing loss. Hear Res 2008;237:90-105. https://doi.org/10.1016/j.heares.2008.01.002
  35. Sheykholeslami K, Megerian CA, Zheng QY. Vestibular evoked myogenic potentials in normal mice and Phex mice with spontaneous endolymphatic hydrops. Otol Neurotol 2009;30:535-44. https://doi.org/10.1097/MAO.0b013e31819bda13
  36. Wick CC, Semaan MT, Zheng QY, Megerian CA. A genetic murine model of endolymphatic hydrops: the Phex mouse. Curr Otorhinolaryngol Rep 2014;2:144-51. https://doi.org/10.1007/s40136-014-0048-7
  37. Ingham NJ, Thornton SK, Comis SD, Withington DJ. The auditory brainstem response of aged guinea pigs. Acta Otolaryngol 1998;118:673-80. https://doi.org/10.1080/00016489850183160
  38. Sirjani DB, Salt AN, Gill RM, Hale SA. The influence of transducer operating point on distortion generation in the cochlea. J Acoust Soc Am 2004;115:1219-29. https://doi.org/10.1121/1.1647479
  39. Valk WL, Wit HP, Albers FW. Evaluation of cochlear function in an acute endolymphatic hydrops model in the guinea pig by measuring low-level DPOAEs. Hear Res 2004;192:47-56. https://doi.org/10.1016/j.heares.2003.12.021
  40. Campbell KC, Faloon KM, Rybak LP. Noninvasive electrodes for electrocochleography in the chinchilla. Arch Otolaryngol Head Neck Surg 1993;119:767-71. https://doi.org/10.1001/archotol.1993.01880190063013
  41. Degerman E, In't Zandt R, Palbrink A, Magnusson M. Endolymphatic hydrops induced by different mechanisms responds differentially to spironolactone: a rationale for understanding the diversity of treatment responses in hydropic inner ear disease. Acta Otolaryngol 2019;139:685-91. https://doi.org/10.1080/00016489.2019.1616819
  42. Kitano H, Takeda T, Takeda S, Suzuki M, Kitanishi T, Kitajima K, et al. Endolymphatic hydrops by administration of vasopressin in the rat. Acta Histochemica et Cytochemica 2001;34:229-33. https://doi.org/10.1267/ahc.34.229