DOI QR코드

DOI QR Code

Comparison of the antioxidant activity and nutritional contents of ectomycorrhizal mushroom extracts in Korea

국내 균근성 버섯류 추출물의 항산화능 및 영양성분 비교

  • An, Gi-Hong (Mushroom Research Division, National Institute of Horticultural and Herbal Science, RDA) ;
  • Han, Jae-Gu (Mushroom Research Division, National Institute of Horticultural and Herbal Science, RDA) ;
  • Cho, Jae-Han (Mushroom Research Division, National Institute of Horticultural and Herbal Science, RDA)
  • 안기홍 (농촌진흥청 국립원예특작과학원 인삼특작부 버섯과) ;
  • 한재구 (농촌진흥청 국립원예특작과학원 인삼특작부 버섯과) ;
  • 조재한 (농촌진흥청 국립원예특작과학원 인삼특작부 버섯과)
  • Received : 2020.05.27
  • Accepted : 2020.06.24
  • Published : 2020.06.30

Abstract

The extracts of four species of ectomycorrhizal mushrooms-Cantharellus cinnabarinus (OK1247), Lactarius parallelus (OK1264), Tricholoma matsutake (OK1282), and Ramaria botrytis (OK1283)-were prepared to determine their antioxidant activities and nutritional properties. R. botrytis extract displayed the highest 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity (33.8%), ferric reducing antioxidant power (0.38), reducing power (0.35), total polyphenol (13.83 mg gallic acid equivalent/g), and flavonoid contents (2.56 mg quercetin equivalent/g). L. parallelus extract displayed the highest nitrite scavenging activity. Analysis of amino acid contents revealed that C. cinnabarinus extract had the highest total amino acid (1,046.1 mg/kg) and essential amino acid (404.9 mg/kg) contents, while R. botrytis extract had the lowest total amino acid (708.3 mg/kg) and essential amino acid (247.3 mg/kg) contents. Among the amino acid components detected in the four ectomycorrhizal mushrooms, cysteine was the most abundant, accounting for 14.3~20.7%, followed by phenylalanine, which accounted for 9.5~13.4% of all amino acids. In summary, the antioxidant activities were the highest in R. botrytis extract, and the amino acid content was the highest in C. cinnabarinus extract, among the four ectomycorrhizal mushrooms.

국내 자생하는 균근성 버섯 중 본 연구에서 수집한 붉은꾀꼬리버섯(C. cinnabarinus), 젖버섯속(L. parallelus), 송이(T. matsutake), 싸리버섯(R. botrytis) 추출물의 생리활성 성분을 평가하기 위하여 DPPH 라디컬 소거능, 철환원 항산화능, 환원력, 아질산염 소거능, 총 폴리페놀 및 총 플라보노이드 함량의 항산화 활성과 균근성 버섯의 건조시료를 이용하여 아미노산 성분 함량을 분석하였다. 본 연구의 수집된 균근성 버섯류 중에서 싸리버섯(R. botrytis) 열수추출물의 DPPH 라디컬 소거능(33.8%), 철 환원 항산화능(0.38), 환원력(0.35), 총 폴리페놀 함량(13.83 mg GAE/g) 및 총 플라보노이드 함량(2.56 mg QE/g)이 다른 버섯류에 비하여 월등히 높은 것으로 나타났으며, 아질산염 소거능은 젖버섯속(L. parallelus)이 높았다. 총 아미노산 및 총 필수아미노산 함량은 붉은꾀꼬리버섯(OK1165)이 각각 1,046.1 mg/kg과 404.9 mg/kg으로 다른 균근성 버섯류에 비하여 가장 높게 검출되었다. 4종의 균근성 버섯류에서 검출된 아미노산 성분 중 시스테인(Cys)이 전체 아미노산 성분 중에서 가장 높게 검출된 성분이었으며, 페닐알라닌(Phe)는 다음으로 많이 검출된 성분이었다. 붉은꾀꼬리버섯(C. cinnabarinus)의 경우 쓴맛을 내는 성분들이 함량이 높았으나 동시에 감칠맛, 단맛을 내는 성분들도 다른 균근성 버섯류에 비하여 높았으며, 송이(T. matsutake)는 감칠맛, 단맛을 내는 성분이 다른 균근성 버섯류에 비하여 높게 검출되는 것으로 나타났다. 본 연구의 야생에서 수집한 4종의 균근성 버섯류 중에서 항산화능은 싸리버섯(R. botrytis)이 가장 높았으며, 아미노산 함량은 붉은꾀꼬리버섯(C. cinnabarinus)이 높은 것으로 확인되었다.

Keywords

References

  1. Alexander IJ. 2006. Ectomycorrhiza - Out of Africa? New Phytol 172: 589-591. https://doi.org/10.1111/j.1469-8137.2006.01930.x
  2. Agerer R. 2006. Fungal relationships and structural identity of their ectomycorrhizae. Mycol Progress 5: 67-107. https://doi.org/10.1007/s11557-006-0505-x
  3. An GH, Cho JH, Lee KH, Han JG. 2019a. Physiological activities of extracts of wild mushrooms collected in Korea. J Mushroom 17: 70-77. https://doi.org/10.14480/JM.2019.17.2.70
  4. An GH, Han JG, Cho JH. 2019b. Antioxidant and anti-inflammatory activities of different extraction solvents of Cryptoporus volvatus. J Mushroom 17: 136-143.
  5. Barros L, Duenas M, Ferreira IC, Baptista P, Santos-Buelga C. 2009. Phenolic acids determination by HPLC-DAD-ESI/MS in sixteen different Portuguese wild mushrooms species. Food Chem Toxicol 47: 1076-1079. https://doi.org/10.1016/j.fct.2009.01.039
  6. Beluhan S, Ranogajec A. 2011. Chemical composition and non-volatile components of Croatian wild edible mushrooms. Food Chem 124: 1076-1082. https://doi.org/10.1016/j.foodchem.2010.07.081
  7. Benzie IF, Strain JJ. 1999. Ferric reducing antioxidant power assay : direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods Enzymol 299: 15-27. https://doi.org/10.1016/S0076-6879(99)99005-5
  8. Blois MS. 1958. Antioxidant determination by the use of a stable free radical. Nature 181: 1191-1200. https://doi.org/10.1038/1811199a0
  9. Brundrett MC. 2009. Mycorrhizal associations and other means of nutrition of vascular plant: Understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant Soil 320: 37-77. https://doi.org/10.1007/s11104-008-9877-9
  10. Cha JY, Kim HJ, Chung CH, Cho YS. 1999. Antioxidative activities and contents of polyphenilic compounds of Cudrania tricuspidata. J Kor Soc Food Sci Nutr 28: 1310-1315.
  11. Choi SH, Lee SJ, Jo WS, Choi JW, Park SC. 2016. Comparison of ingredients and antioxidant activity of the domestic regional Wolfiporia extensa. Kor J Mycol 44: 23-30. https://doi.org/10.4489/KJM.2016.44.1.23
  12. Choi DB, Cho KA, Na MS, Choi HS, Kim YO, Lim DH, Cho SJ, Cho H. 2008. Effect of bamboo oil on antioxidative activity and nitrite scavenging activity. J Ind Eng Chem 14: 765-770. https://doi.org/10.1016/j.jiec.2008.06.005
  13. Choi JS, Park SH, Choi JH. 1989. Nitrite scavenging effect by flavonoids and its structure-effect relationship. Arch Pharmacol Res 12: 26-33. https://doi.org/10.1007/BF02855742
  14. Chung SY, Kim NK, Yoon S. 1999. Nitrite scavenging effect of methanol fraction obtained from green yellow vegetable juices. J Kor Soc Food Sci Nutr 28: 342-347.
  15. Daniel JS, Steven AC. 1993. Sensitive analysis of cystine/cysteine using 6-aninoquinoquinoly-N-hydroxysuccinimidy carbamate (AQC) derivatives. Tech Protein Chem 4: 299-306.
  16. Duncan DB. 1955. Multiple range and multiple F-test. Biometrics 11: 1-5. https://doi.org/10.2307/3001478
  17. Folin O, Denis W. 1912. On phosphotungstic-phosphomolybdic compounds as color reagents. J Biol Chem 12: 239-243. https://doi.org/10.1016/S0021-9258(18)88697-5
  18. Gardner PR, Fridovich I. 1991. Superoxide sensitivity of Escherichia coli 6-phosphogluconate dehydratase. J Biol Chem 266: 1478-1783. https://doi.org/10.1016/S0021-9258(18)52319-X
  19. Gray JI, Dugan Jr LR. 1975. Inhibition of N-nitrosamine formation in model food systems. J Food Sci 40: 981-984. https://doi.org/10.1111/j.1365-2621.1975.tb02248.x
  20. van der Heijden MGA, Martin FM, Selosse MA, Sanders IR. 2015. Mycorrhizal ecology and evolution: The past, the present, and the future. New Phytol 142-06-1423.
  21. Huang SJ, Mau JL. 2006. Antioxidant properties of methanolic extracts from Agraicus blazei with various doses of $\gamma$- irradiation. Lebensm Wiss Technol 39: 707-716. https://doi.org/10.1016/j.lwt.2005.06.001
  22. Hwang BH, Lee TS. 2003. Extractive compounds of Ramaria formosa (Fr.) Quel. J Kor For En 32: 37-42.
  23. Islam T, Yu X, Xu B. 2016. Phenolic profiles, antioxidant capacities and metal chelating ability of edible mushrooms commonly consumed in China. LWT-Food Sci Technol 72: 423-431. https://doi.org/10.1016/j.lwt.2016.05.005
  24. Jeon SM, Ka KH. 2015. Morphological and cultural characteristics of ectomycorrhizal mushrooms. Research Report. Korea Forest Research Institute. 15-13.
  25. Kim DH, Park SR, Debnath T, Abul MD, Pervin M, Lim BO. 2013. Evaluation of the antioxidant activity and anti-inflammatory effect of Hericium erinaceus water extracts. Kor J Med Crop Sci 21: 112-117. https://doi.org/10.7783/KJMCS.2013.21.2.112
  26. Kim HY, Woo KS, Hwang IG, Lee YR, Jeong HS. 2008. Effects of heat treatments on the antioxidant activities of fruits and vegetables. Kor J Food Sci Technol 40: 166-170.
  27. Kim HJ, Bae JT, Lee JW, Hwang Bo MH, Im HG, Lee IS. 2005. Antioxidant activity and inhibitive effects on human leukemia cells of edible mushrooms extracts. Kor J Food Preserv 12: 80-85.
  28. Kim HJ, Lee KR. 2003. Effect of Ramaria botrytis methanol extract on antioxidant enzyme activities in benzo ($\alpha$) pyrene-treated mice. Kor J Food Sci Technol 35: 286-290.
  29. Ku KH, Cho MH, Park WS. 2002. Characteristics of quality and volatile flavor compounds in raw and frozen pine mushroom (Tricholoma matsutake). Kor J Food Sci Technol 34: 625-630.
  30. Lee H, Wissitrassameewong K, Park MS, Verbeken A, Eimes J, Lim YW. 2019. Taxonomic revision of the genus Lactarius (Russulales, Basidiomycota) in Korea. Fungal Diversity 95: 275-335. https://doi.org/10.1007/s13225-019-00425-6
  31. Lee DS, Kim KH, Yook HS. 2016. Antioxidant activities of different parts of Sparassis crispa depending on extraction temperature. J Kor Soc Food Sci Nutr 45: 1617-1622. https://doi.org/10.3746/jkfn.2016.45.11.1617
  32. Lee HJ, Do JR, Chung MY, Kim HK. 2014. Antioxidant activities of Pleurotus cornucopiae extracts by extraction conditions. J Kor Soc Food Sci Nutr 43: 836-841. https://doi.org/10.3746/jkfn.2014.43.6.836
  33. Lee SJ, Moon SH, Kim T, Kim JY, Seo JS, Kim DS, Kim J, Kim YJ, Park YI. 2003. Anticancer and antioxidant activities of Coriolus versicolor culture extracts cultivated in the citrus extracts. J Microbiol Biotech 31: 362-367.
  34. Lim HW, Yoon JH, Kim YS, Lee MW, Park SY, Choi HK. 2007. Free radical-scavenging and inhibition of nitric oxide production by four grades of pine mushroom (Tricholoma matsutake Sing.). Food Chem 103: 1337-1342. https://doi.org/10.1016/j.foodchem.2006.10.046
  35. Mau JL, Chang Ch, Huang CJ, Chen CC. 2004. Antioxidant properties of methanolic extracts from Grifola frondosa, Morchella esculenta and Termitomyces albuminosus mycelia. Food Chem 87: 111-118. https://doi.org/10.1016/j.foodchem.2003.10.026
  36. Mau JL, Lin HC, Chen CC. 2001. Non-volatile components of several medicinal mushrooms. Food Res Int 34: 521-526. https://doi.org/10.1016/S0963-9969(01)00067-9
  37. Moreno S, Scheyer T, Romano CS, Yojnov AA. 2006. Antioxidant and antimicrobial activities of rosemary extracts linked to their polyphenol composition. Free Radic Res 40: 223-231. https://doi.org/10.1080/10715760500473834
  38. Mortimer PE, Karunarathna SC, Li Q, Gui H, Yang X, Yang X, He J, Ye L, Guo J, Li H, Sysouphanthong P, Zhou D, Xu J, Hyde KD. 2012. Prized edible Asian mushrooms: Ecology, conservation and sustainability. Fungal Diversity 56: 31-47. https://doi.org/10.1007/s13225-012-0196-3
  39. Nguyen TK, Shin DB, Lee KR, Shin PG, Cheong JC, Yoo YB, Lee MW, Jin GH, Kim HY, Im KH, Lee TS. 2013. Antioxidant and anti-inflammatory activities of fruiting bodies of Dyctiophora indusiata. J Mushroom Sci Prod 11: 269-277. https://doi.org/10.14480/JM.2013.11.4.269
  40. Oyaizu M. 1986. Studies on products of browning reactions : antioxidative activities of products of browning reaction prepared from glucosamine. Jpn J Nutr Diet 44: 307-315. https://doi.org/10.5264/eiyogakuzashi.44.307
  41. Park WH, Lee JH. 2011. New wild fungi of Korea. Kyo-Hak Publishing Co. pp. 216. Seoul, Korea.
  42. Ramesh C, Pattar MG. 2010. Antimicrobial properties, antioxidant activity and bioactive compounds from six wild edible mushrooms of western ghats of Karnataka, India. Pharmacogn Res 2: 107-112. https://doi.org/10.4103/0974-8490.62953
  43. Rice-Evans CA, Miller NJ, Paganga G. 1996. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med 20: 933-956. https://doi.org/10.1016/0891-5849(95)02227-9
  44. Saha AK, Rahman MR, Shahriar M, Saha SK, Azad NA, Das S. 2013. Screening of six ayuvedic medicinal plant extracts for antioxidant and cytotoxic activity. J Phar Phytochem 2: 181-188.
  45. Shimada K, Fujikawa K, Yahara K, Nakamura T. 1992. Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodexrtrin emulsion. J Agric Food Chem 40: 945-948. https://doi.org/10.1021/jf00018a005
  46. Smith SE, Read DJ. 1997. Mycorrhizal symbiosis (2nd Ed.), AcademicPress. London, UK.
  47. Seo SY, Park YG, Jang YS, Ka KH. 2017. Antioxidant properties of Lentinula edodes after sawdust bag cultivation with different oak substrates. Kor J Mycol 45: 121-131. https://doi.org/10.4489/KJM.20170015
  48. Sohn HY, Shin YK, Kim JS. 2010. Anti-proliferative activities of solid-state fermented medicinal herbs using Phelimus baumii against human colorectal HCT116 cell. J Life Sci 20: 1268-1275. https://doi.org/10.5352/JLS.2010.20.8.1268
  49. Taylor DL, Bruns TD. 1997. Independent, specialized invasions of ectomycorrhizal mutualism by two nonphotosynthetic orchids. Proc Natl Acad Sci USA 94: 4510-4515. https://doi.org/10.1073/pnas.94.9.4510
  50. Xu BJ, Chang SK. 2007. A comparative study on phenolic profiles and antioxidant activities of legumes as affected by extraction solvents. J Food Sci 72: 159-166.
  51. Yang JH, Lin HC, Mau JL. 2001. Non-volatile taste components of several commercial mushrooms. Food Chem 72: 465-471. https://doi.org/10.1016/S0308-8146(00)00262-4
  52. Yoon KY, Lee SH, Shin SR. 2006. Antioxidant and antimicrobial activities of extracts from Sarcodon aspratus. J Kor Soc Food Sci Nutr 35: 967-972. https://doi.org/10.3746/jkfn.2006.35.8.967
  53. Zavastin DE, Bujor A, Tuchilus C, Mircea CG, Gherman SP, Aprotosoaie AC, Miron A. 2016. Studies on antioxidant, antihyperglycemic and antimicrobial effects of edible mushrooms Boletus edulis and Cantharellus cibarius. J Plant Develop 23: 87-95.