DOI QR코드

DOI QR Code

Use of Magnetic Resonance Neurography for Evaluating the Distribution and Patterns of Chronic Inflammatory Demyelinating Polyneuropathy

  • Xiaoyun Su (Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology) ;
  • Xiangquan Kong (Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology) ;
  • Zuneng Lu (Department of Neurology, Renming Hospital of Wuhan University) ;
  • Min Zhou (Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology) ;
  • Jing Wang (Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology) ;
  • Xiaoming Liu (Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology) ;
  • Xiangchuang Kong (Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology) ;
  • Huiting Zhang (MR Scientific Marketing, Siemens Healthineers) ;
  • Chuansheng Zheng (Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology)
  • 투고 : 2019.10.06
  • 심사 : 2019.12.19
  • 발행 : 2020.04.01

초록

Objective: To evaluate the distribution and characteristics of peripheral nerve abnormalities in chronic inflammatory demyelinating polyneuropathy (CIDP) using magnetic resonance neurography (MRN) and to examine the diagnostic efficiency. Materials and Methods: Thirty-one CIDP patients and 21 controls underwent MR scans. Three-dimensional sampling perfections with application-optimized contrasts using different flip-angle evolutions and T1-/T2- weighted turbo spin-echo sequences were performed for neurography of the brachial and lumbosacral (LS) plexus and cauda equina, respectively. Clinical data and scores of the inflammatory Rasch-built overall disability scale (I-RODS) in CIDP were obtained. Results: The bilateral extracranial vagus (n = 11), trigeminal (n = 12), and intercostal nerves (n = 10) were hypertrophic. Plexus hypertrophies were observed in the brachial plexus of 19 patients (61.3%) and in the LS plexus of 25 patients (80.6%). Patterns of hypertrophy included uniform hypertrophy (17 [54.8%] brachial plexuses and 21 [67.7%] LS plexuses), and multifocal fusiform hypertrophy (2 [6.5%] brachial plexuses and 4 [12.9%] LS plexuses) was present. Enlarged and/or contrast-enhanced cauda equina was found in 3 (9.7%) and 13 (41.9%) patients, respectively. Diameters of the brachial and LS nerve roots were significantly larger in CIDP than in controls (p < 0.001). The largest AUC was obtained for the L5 nerve. There were no significant differences in the course duration, I-RODS score, or diameter between patients with and without hypertrophy. Conclusion: MRN is useful for the assessment of distribution and characteristics of the peripheral nerves in CIDP. Compared to other regions, LS plexus neurography is more sensitive for CIDP.

키워드

과제정보

We acknowledge the National Natural Science Foundation of China (Grant No. 81470076).

참고문헌

  1. Vallat JM, Sommer C, Magy L. Chronic inflammatory demyelinating polyradiculoneuropathy: diagnostic and therapeutic challenges for a treatable condition. Lancet Neurol 2010;9:402-412 https://doi.org/10.1016/S1474-4422(10)70041-7
  2. Rotta FT, Sussman AT, Bradley WG, Ram Ayyar D, Sharma KR, Shebert RT. The spectrum of chronic inflammatory demyelinating polyneuropathy. J Neurol Sci 2000;173:129-139 https://doi.org/10.1016/S0022-510X(99)00317-2
  3. Alabdali M, Abraham A, Alsulaiman A, Breiner A, Barnett C, Katzberg HD, et al. Clinical characteristics, and impairment and disability scale scores for different CIDP disease activity status classes. J Neurol Sci 2017;372:223-227 https://doi.org/10.1016/j.jns.2016.11.056
  4. de Silva RN, Willison HJ, Doyle D, Weir AI, Hadley DM, Thomas AM. Nerve root hypertrophy in chronic inflammatory demyelinating polyneuropathy. Muscle Nerve 1994;17:168-170 https://doi.org/10.1002/mus.880170206
  5. Iijima M, Koike H, Hattori N, Tamakoshi A, Katsuno M, Tanaka F, et al. Prevalence and incidence rates of chronic inflammatory demyelinating polyneuropathy in the Japanese population. J Neurol Neurosurg Psychiatry 2008;79:1040-1043 https://doi.org/10.1136/jnnp.2007.128132
  6. Rajabally YA, Stettner M, Kieseier BC, Hartung HP, Malik RA. CIDP and other inflammatory neuropathies in diabetes - Diagnosis and management. Nat Rev Neurol 2017;13:599-611 https://doi.org/10.1038/nrneurol.2017.123
  7. Latov N. Diagnosis and treatment of chronic acquired demyelinating polyneuropathies. Nat Rev Neurol 2014;10:435-446 https://doi.org/10.1038/nrneurol.2014.117
  8. Scheidl E, Bohm J, Simo M, Rozsa C, Bereznai B, Kovacs T, et al. Ultrasonography of MADSAM neuropathy: focal nerve enlargements at sites of existing and resolved conduction blocks. Neuromuscul Disord 2012;22:627-631 https://doi.org/10.1016/j.nmd.2012.03.005
  9. Mathey EK, Park SB, Hughes RA, Pollard JD, Armati PJ, Barnett MH, et al. Chronic inflammatory demyelinating polyradiculoneuropathy: from pathology to phenotype. J Neurol Neurosurg Psychiatry 2015;86:973-985 https://doi.org/10.1136/jnnp-2014-309697
  10. Van den Bergh PY, Hadden RD, Bouche P, Cornblath DR, Hahn A, Illa I, et al. European Federation of Neurological Societies/Peripheral Nerve Society guideline on management of chronic inflammatory demyelinating polyradiculoneuropathy: report of a joint task force of the European Federation of Neurological Societies and the Peripheral Nerve Society - First revision. Eur J Neurol 2010;17:356-363 https://doi.org/10.1111/j.1468-1331.2009.02930.x
  11. Bradley LJ, Wilhelm T, King RH, Ginsberg L, Orrell RW. Brachial plexus hypertrophy in chronic inflammatory demyelinating polyradiculoneuropathy. Neuromuscul Disord 2006;16:126-131 https://doi.org/10.1016/j.nmd.2005.11.006
  12. Hiwatashi A, Togao O, Yamashita K, Kikuchi K, Ogata H, Yamasaki R, et al. Evaluation of chronic inflammatory demyelinating polyneuropathy: 3D nerve-sheath signal increased with inked rest-tissue rapid acquisition of relaxation enhancement imaging (3D SHINKEI). Eur Radiol 2017;27:447-453 https://doi.org/10.1007/s00330-016-4406-3
  13. Murtz P, Kaschner M, Lakghomi A, Gieseke J, Willinek WA, Schild HH, et al. Diffusion-weighted MR neurography of the brachial and lumbosacral plexus: 3.0 T versus 1.5 T imaging. Eur J Radiol 2015;84:696-702 https://doi.org/10.1016/j.ejrad.2015.01.008
  14. Lee JH, Cheng KL, Choi YJ, Baek JH. High-resolution imaging of neural anatomy and pathology of the neck. Korean J Radiol 2017;18:180-193 https://doi.org/10.3348/kjr.2017.18.1.180
  15. Wang L, Niu Y, Kong X, Yu Q, Kong X, Lv Y, et al. The application of paramagnetic contrast-based T2 effect to 3D heavily T2W high-resolution MR imaging of the brachial plexus and its branches. Eur J Radiol 2016;85:578-584 https://doi.org/10.1016/j.ejrad.2015.12.001
  16. van Nes SI, Vanhoutte EK, van Doorn PA, Hermans M, Bakkers M, Kuitwaard K, et al. Rasch-built overall disability scale (R-ODS) for immune-mediated peripheral neuropathies. Neurology 2011;76:337-345 https://doi.org/10.1212/WNL.0b013e318208824b
  17. Shibuya K, Sugiyama A, Ito S, Misawa S, Sekiguchi Y, Mitsuma S, et al. Reconstruction magnetic resonance neurography in chronic inflammatory demyelinating polyneuropathy. Ann Neurol 2015;77:333-337 https://doi.org/10.1002/ana.24314
  18. Grothues F, Smith GC, Moon JC, Bellenger NG, Collins P, Klein HU, et al. Comparison of interstudy reproducibility of cardiovascular magnetic resonance with two-dimensional echocardiography in normal subjects and in patients with heart failure or left ventricular hypertrophy. Am J Cardiol 2002;90:29-34 https://doi.org/10.1016/S0002-9149(02)02381-0
  19. Kim SK, Jeong MY, Kang HK, Yoon W. Diffusion-weighted magnetic resonance imaging findings in a patient with trigeminal ganglioneuroma. Korean J Radiol 2013;14:118-121 https://doi.org/10.3348/kjr.2013.14.1.118
  20. Behzadi AH, Farooq Z, Zhao Y, Shih G, Prince MR. Dentate nucleus signal intensity decrease on T1-weighted MR images after switching from gadopentetate dimeglumine to gadobutrol. Radiology 2018;287:816-823 https://doi.org/10.1148/radiol.2018171398
  21. Duarte J, Martinez AC, Rodriguez F, Mendoza A, Sempere AP, Claveria LE. Hypertrophy of multiple cranial nerves and spinal roots in chronic inflammatory demyelinating neuropathy. J Neurol Neurosurg Psychiatry 1999;67:685-687 https://doi.org/10.1136/jnnp.67.5.685
  22. Zhang Z, Meng Q, Chen Y, Li Z, Luo B, Yang Z, et al. 3-T imaging of the cranial nerves using three-dimensional reversed FISP with diffusion-weighted MR sequence. J Magn Reson Imaging 2008;27:454-458 https://doi.org/10.1002/jmri.21009
  23. Oguz B, Oguz KK, Cila A, Tan E. Diffuse spinal and intercostal nerve involvement in chronic inflammatory demyelinating polyradiculoneuropathy: MRI findings. Eur Radiol 2003;13:L230-L234 https://doi.org/10.1007/s00330-003-1996-3
  24. Matsuda M, Ikeda S, Sakurai S, Nezu A, Yanagisawa N, Inuzuka T. Hypertrophic neuritis due to chronic inflammatory demyelinating polyradiculoneuropathy (CIDP): a postmortem pathological study. Muscle Nerve 1996;19:163-169 https://doi.org/10.1002/(SICI)1097-4598(199602)19:2<163::AID-MUS6>3.0.CO;2-C
  25. Arvidson B. A study of the perineurial diffusion barrier of a peripheral ganglion. Acta Neuropathol 1979;46:139-144 https://doi.org/10.1007/BF00684815
  26. Jacobs JM, Macfarlane RM, Cavanagh JB. Vascular leakage in the dorsal root ganglia of the rat, studied with horseradish peroxidase. J Neurol Sci 1976;29:95-107 https://doi.org/10.1016/0022-510X(76)90083-6
  27. Olsson Y, Reese TS. Permeability of vasa nervorum and perineurium in mouse sciatic nerve studied by fluorescence and electron microscopy. J Neuropathol Exp Neurol 1971;30:105-119 https://doi.org/10.1097/00005072-197101000-00011
  28. Shimizu F, Sawai S, Sano Y, Beppu M, Misawa S, Nishihara H, et al. Severity and patterns of blood-nerve barrier breakdown in patients with chronic inflammatory demyelinating polyradiculoneuropathy: correlations with clinical subtypes. PLoS One 2014;9:e104205
  29. Kanda T, Numata Y, Mizusawa H. Chronic inflammatory demyelinating polyneuropathy: decreased claudin-5 and relocated ZO-1. J Neurol Neurosurg Psychiatry 2004;75:765-769 https://doi.org/10.1136/jnnp.2003.025692
  30. Duggins AJ, McLeod JG, Pollard JD, Davies L, Yang F, Thompson EO, et al. Spinal root and plexus hypertrophy in chronic inflammatory demyelinating polyneuropathy. Brain 1999;122:1383-1390
  31. Eurelings M, Notermans NC, Franssen H, Van Es HW, Ramos LM, Wokke JH, et al. MRI of the brachial plexus in polyneuropathy associated with monoclonal gammopathy. Muscle Nerve 2001;24:1312-1318 https://doi.org/10.1002/mus.1149
  32. Hartig F, Ross M, Dammeier NM, Fedtke N, Heiling B, Axer H, et al. Nerve ultrasound predicts treatment response in chronic inflammatory demyelinating polyradiculoneuropathy-a prospective follow-up. Neurotherapeutics 2018;15:439-451 https://doi.org/10.1007/s13311-018-0609-4
  33. Jongbloed BA, Bos JW, Rutgers D, van der Pol WL, van den Berg LH. Brachial plexus magnetic resonance imaging differentiates between inflammatory neuropathies and does not predict disease course. Brain Behav 2017;7:e00632
  34. Akcar N, Ozkan S, Mehmetoglu O, Calisir C, Adapinar B. Value of power Doppler and gray-scale US in the diagnosis of carpal tunnel syndrome: contribution of cross-sectional area just before the tunnel inlet as compared with the cross-sectional area at the tunnel. Korean J Radiol 2010;11:632-639 https://doi.org/10.3348/kjr.2010.11.6.632
  35. Ugur HC, Attar A, Uz A, Tekdemir I, Egemen N, Caglar S, et al. Surgical anatomic evaluation of the cervical pedicle and adjacent neural structures. Neurosurgery 2000;47:1162-1169 https://doi.org/10.1097/00006123-200011000-00029