References
- Chartrand G, Cheng PM, Vorontsov E, Drozdzal M, Turcotte S, Pal CJ, et al. Deep learning: a primer for radiologists. Radiographics 2017;37:2113-2131 https://doi.org/10.1148/rg.2017170077
- Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, et al. A survey on deep learning in medical image analysis. Med Image Anal 2017;42:60-88 https://doi.org/10.1016/j.media.2017.07.005
- Dreyer KJ, Geis JR. When machines think: radiology's next frontier. Radiology 2017;285:713-718 https://doi.org/10.1148/radiol.2017171183
- Soffer S, Ben-Cohen A, Shimon O, Amitai MM, Greenspan H, Klang E. Convolutional neural networks for radiologic images: a radiologist's guide. Radiology 2019;290:590-606 https://doi.org/10.1148/radiol.2018180547
- Cardoso JR, Pereira LM, Iversen MD, Ramos AL. What is gold standard and what is ground truth? Dental Press J Orthod 2014;19:27-30 https://doi.org/10.1590/2176-9451.19.5.027-030.ebo
- Zhong Z, Zheng L, Kang G, Li S, Yang Y. Random erasing data augmentation. eprint arXiv, 2017. Available at: https://ui.adsabs.harvard.edu/abs/2017arXiv170804896Z. Accessed April 1, 2019
- TIOBE index for April 2019. TIOBE Web site. https://www.tiobe.com/tiobe-index/. Accessed April 30, 2019
- Jia Y, Shelhamer E, Donahue J, Karayev S, Long J, Girshick R, et al. Caffe: convolutional architecture for fast feature embedding. eprint arXiv, 2014. Available at: https://ui.adsabs.harvard.edu/abs/2014arXiv1408.5093J. Accessed April 1, 2019
- Bastien F, Lamblin P, Pascanu R, Bergstra J, Goodfellow I, Bergeron A, et al. Theano: new features and speed improvements. eprint arXiv, 2012. Available at: https://ui.adsabs.harvard.edu/abs/2012arXiv1211.5590B. Accessed April 1, 2019
- Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, et al. TensorFlow: a system for large-scale machine learning. eprint arXiv, 2016. Available at: https://ui.adsabs.harvard.edu/abs/2016arXiv160508695A. Accessed April 1, 2019
- Lee JG, Jun S, Cho YW, Lee H, Kim GB, Seo JB, et al. Deep learning in medical imaging: general overview. Korean J Radiol 2017;18:570-584 https://doi.org/10.3348/kjr.2017.18.4.570
- Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems 2012;25:1090-1098
- Lee C, Kim Y, Kim YS, Jang J. Automatic disease annotation from radiology reports using artificial intelligence implemented by a recurrent neural network. AJR Am J Roentgenol 2019;212:734-740 https://doi.org/10.2214/AJR.18.19869
- Girshick R, Donahue J, Darrell T, Malik J. Rich feature hierarchies for accurate object detection and semantic segmentation. eprint arXiv, 2013. Available at: https://ui.adsabs.harvard.edu/abs/2013arXiv1311.2524G. Accessed April 1, 2019
- Kazuhiro K, Werner RA, Toriumi F, Javadi MS, Pomper MG, Solnes LB, et al. Generative adversarial networks for the creation of realistic artificial brain magnetic resonance images. Tomography 2018;4:159-163 https://doi.org/10.18383/j.tom.2018.00042
- Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, et al. Generative adversarial networks. eprint arXiv, 2014. Available at: https://ui.adsabs.harvard.edu/abs/2014arXiv1406.2661G. Accessed April 1, 2019
- Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation. eprint arXiv, 2015. Available at: https://ui.adsabs.harvard.edu/ abs/2015arXiv150504597R. Accessed April 1, 2019
- Huang G, Liu Z, van der Maaten L, Weinberger KQ. Densely connected convolutional networks. eprint arXiv, 2016. Available at: https://ui.adsabs.harvard.edu/abs/2016arXiv160806993H. Accessed April 1, 2019
- Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. eprint arXiv, 2014. Available at: https://ui.adsabs.harvard.edu/abs/2014arXiv1409.1556S. Accessed April 1, 2019
- He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. eprint arXiv, 2015. Available at: https://ui.adsabs.harvard.edu/abs/2015arXiv151203385H. Accessed April 1, 2019
- Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, et al. Going deeper with convolutions. eprint arXiv, 2014. Available at: https://ui.adsabs.harvard.edu/abs/2014arXiv1409.4842S. Accessed April 1, 2019
- He K, Gkioxari G, Dollar P, Girshick R. Mask R-CNN. eprint arXiv, 2017. Available at: https://ui.adsabs.harvard.edu/abs/2017arXiv170306870H. Accessed April 1, 2019
- Lecun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proceedings of the IEEE 1998;86:2278-2324
- Zeiler MD, Fergus R. Visualizing and understanding convolutional networks. eprint arXiv, 2013. Available at: https://ui.adsabs.harvard.edu/abs/2013arXiv1311.2901Z. Accessed April 1, 2019
- Qian N. On the momentum term in gradient descent learning algorithms. Neural Netw 1999;12:145-151 https://doi.org/10.1016/S0893-6080(98)00116-6
- Nesterov YE. A method for solving the convex programming problem with convergence rate O(1/k2). Dokl Akad Nauk SSSR 1983;269:543-547
- Duchi J, Hazan E, Singer Y. Adaptive subgradient methods for online learning and stochastic optimization. J Mach Learn Res 2011;12:2121-2159
- Zeiler MD. ADADELTA: an adaptive learning rate method. eprint arXiv, 2012. Available at: https://ui.adsabs.harvard. edu/abs/2012arXiv1212.5701Z. Accessed April 1, 2019
- Kingma DP, Ba J. Adam: a method for stochastic optimization. eprint arXiv, 2014. Available at: https://ui.adsabs.harvard. edu/abs/2014arXiv1412.6980K. Accessed April 1, 2019