DOI QR코드

DOI QR Code

Enhancing the Performance of InGaN Photoelectrode by Using YAG:Ce3+@ beta-SiALON Phosphor

YAG:Ce3+@ beta-SiALON 형광체를 이용한 InGaN 광전극의 효과적인 물분해

  • Bae, Hyojung (Optoelectronics Convergence Research Center, Chonnam National University) ;
  • Lee, Daejang (UJL Inc. Advanced Institutes of Convergence Technology) ;
  • Cha, An-Na (School of Chemical Engineering, Chonnam National University) ;
  • Ju, Jin-Woo (Laser Research Center, Korea Photonics Technology Institute) ;
  • Moon, Youngboo (UJL Inc. Advanced Institutes of Convergence Technology) ;
  • Ha, Jun-Seok (School of Chemical Engineering, Chonnam National University)
  • Received : 2020.05.11
  • Accepted : 2020.06.08
  • Published : 2020.06.30

Abstract

GaN based photoelectrode has shown good potential owing to its better chemical stability and tunable bandgap with materials such as InN and AlN. Tunable bandgap allows GaN to make the maximum utilization of solar spectrum, which could improve photoelectrode performance. However, the problems about low photoelectrode performance and photo-corrosion still remain. In this study, we attempt to investigate the photoelectrochemical (PEC) properties of phosphor application to InGaN photoelectrode. Experimental result shows YAG:Ce3+ and beta-SiALON phosphor result in the highest photoelectrode performance of InGaN.

Keywords

References

  1. Hou, Y., Yu, X., Syed, Z. A., Shen, S., Bai, J., Wang, T., "GaN Nano-Pyramid Arrays as an Efficient Photoelectrode for Solar Water Splitting," Nanotechnology, Vol. 27, No. 45, 455401, 2016. https://doi.org/10.1088/0957-4484/27/45/455401
  2. Kamimura, J., Bogdanoff, P., Abdi, F. F., Lahnemann, J., Van De Krol, R., Riechert, H., Geelhaar, L., “Photoelectrochemical Properties of GaN Photoanodes with Cobalt Phosphate Catalyst for Solar Water Splitting in Neutral Electrolyte,” J. Phys. Chem. C, Vol. 121, No. 23, pp. 12540-12545, 2017. https://doi.org/10.1021/acs.jpcc.7b02253
  3. Winnerl, J., Hudeczek, R., Stutzmann, M., "Optical Design of GaN Nanowire Arrays for Photocatalytic Applications," J. Appl. Phys., Vol. 123, No. 20, 203104, 2018. https://doi.org/10.1063/1.5028476
  4. Winnerl, J., Kraut, M., Artmeier, S., Stutzmann, M., “Selectively Grown GaN Nanowalls and Nanogrids for Photocatalysis: Growth and Optical Properties,” Nanoscale, Vol. 11, No. 10, pp. 4578-4584, 2019. https://doi.org/10.1039/C8NR09094G
  5. Zhang, Z., Qian, Q., Li, B., Chen, K. J., “Interface Engineering of Monolayer $MoS_2$/GaN Hybrid Heterostructure: Modified Band Alignment for Photocatalytic Water Splitting Application by Nitridation Treatment,” ACS Appl. Mater. Interfaces, Vol. 10, No. 20, pp. 17419-17426, 2018. https://doi.org/10.1021/acsami.8b01286
  6. Chu, S., Li, W., Yan, Y., Hamann, T., Shih, I., Wang, D., Mi, Z., "Roadmap on Solar Water Splitting: Current Status and Future Prospects," Nano Futur., Vol. 1, No. 2, 022001, 2017. https://doi.org/10.1088/2399-1984/aa88a1
  7. Chu, S., Vanka, S., Wang, Y., Gim, J., Wang, Y., Ra, Y. H., Hovden, R., Guo, H., Shih, I., Mi, Z., “Solar Water Oxidation by an InGaN Nanowire Photoanode with a Bandgap of 1.7 EV,” ACS Energy Lett., Vol. 3, No. 2, pp. 307-314, 2018. https://doi.org/10.1021/acsenergylett.7b01138
  8. Shao, G., Lou, C., Xiao, D., "Enhancing the Efficiency of Solar Cells by Down Shifting YAG:$Ce^{3+}$ Phosphors," J. Lumin., Vol. 157, pp. 344-348, 2015. https://doi.org/10.1016/j.jlumin.2014.08.064
  9. Yoshimura, K., Annen, K., Fukunaga, H., Harada, M., Izumi, M., Takahashi, K., Uchikoshi, T., Xie, R. J., Hirosaki, N., "Optical Properties of Solid-State Laser Lighting Devices Using SiAlON Phosphor-Glass Composite Films as Wavelength Converters," Jpn. J. Appl. Phys., Vol. 55, no. 4, 042102, 2016. https://doi.org/10.7567/JJAP.55.042102
  10. Ho Ryu, J., Park, Y. G., Sik Won, H., Hyun Kim, S., Suzuki, H., Yoon, C. "Luminescence Properties of $Eu^{2+}$-Doped ${\beta}-Si_{6-Z}Al_zO_zN_{8-z}$ Microcrystals Fabricated by Gas Pressured Reaction," J. Cryst. Growth, Vol. 311, No. 3, pp. 878-882, 2009. https://doi.org/10.1016/j.jcrysgro.2008.09.107
  11. Ivaturi, A., Macdougall, S. K. W., Martin-Rodriguez, R., Quintanilla, M., Marques-Hueso, J., Kramer, K. W., Meijerink, A., Richards, B. S., "Optimizing Infrared to near Infrared Upconversion Quantum Yield of ${\beta}-NaYF_4:Er^{3+}$ in Fluoropolymer Matrix for Photovoltaic Devices," J. Appl. Phys., Vol. 114, No. 1, 013505, 2013. https://doi.org/10.1063/1.4812578
  12. Solodovnyk, A., Forberich, K., Stern, E., Krc, J., Topic, M., Batentschuk, M., Lipovsek, B., Brabec, C. J., "Highly Transmissive Luminescent Down-Shifting Layers Filled with Phosphor Particles for Photovoltaics," Opt. Mater. Express, Vol. 5, No. 6, p. 1296, 2015. https://doi.org/10.1364/OME.5.001296
  13. Hirosaki, N., Xie, R. J., Kimoto, K., Sekiguchi, T., Yamamoto, Y., Suehiro, T., Mitomo, M., “Characterization and Properties of Green-Emitting ${\beta}$-SiAlON: $Eu^{2+}$ Powder Phosphors for White Light-Emitting Diodes,” Appl. Phys. Lett., Vol. 86, No. 21, pp. 1-3, 2005.
  14. Kimoto, K., Xie, R. J., Matsui, Y., Ishizuka, K., Hirosaki, N., “Direct Observation of Single Dopant Atom in Light-Emitting Phosphor of ${\beta}$-SiAlON: $Eu^{2+}$,” Appl. Phys. Lett., Vol. 94, No. 4, pp. 3-6, 2009.
  15. Chen, L., Chu, C. I., Liu, R. S., “Improvement of Emission Efficiency and Color Rendering of High-Power LED by Controlling Size of Phosphor Particles and Utilization of Different Phosphors,” Microelectron. Reliab., Vol. 52, No. 5, pp. 900-904, 2012. https://doi.org/10.1016/j.microrel.2011.07.058
  16. Takahashi, K., Yoshimura, K. I., Harada, M., Tomomura, Y., Takeda, T., Xie, R. J., Hirosaki, N., "On the Origin of Fine Structure in the Photoluminescence Spectra of the ${\beta}$-Sialon $Eu^{2+}$ Green Phosphor," Sci. Technol. Adv. Mater., Vol. 13, No. 1, 015004, 2012. https://doi.org/10.1088/1468-6996/13/1/015004