DOI QR코드

DOI QR Code

Carbon Stocks of Tree, Forest Floor, and Mineral Soil in Cryptomeria japonica and Chamaecyparis obtusa Stands

삼나무와 편백 임분의 임목, 임상, 토양의 탄소량 비교

  • Kim, Choonsig (Department of Forest Resources, Gyeongnam National University of Science and Technology) ;
  • Baek, Gyeongwon (Department of Forest Resources, Gyeongnam National University of Science and Technology) ;
  • Choi, Byeonggil (Department of Forest Resources, Gyeongnam National University of Science and Technology) ;
  • Ha, Jiseok (Department of Forest Resources, Gyeongnam National University of Science and Technology) ;
  • Bae, Eun Ji (Forest Biomaterials Research Center, National Institute of Forest Science) ;
  • Lee, Kwang-Soo (Warm Temperate and Subtropical Forest Research Center, National Institute of Forest Science) ;
  • Son, Yeong Mo (Forest Biomaterials Research Center, National Institute of Forest Science)
  • 김춘식 (경남과학기술대학교 산림자원학과) ;
  • 백경원 (경남과학기술대학교 산림자원학과) ;
  • 최병길 (경남과학기술대학교 산림자원학과) ;
  • 하지석 (경남과학기술대학교 산림자원학과) ;
  • 배은지 (국립산림과학원 산림바이오소재연구소) ;
  • 이광수 (국립산림과학원 난대아열대산림연구소) ;
  • 손영모 (국립산림과학원 산림바이오소재연구소)
  • Received : 2020.04.19
  • Accepted : 2020.05.27
  • Published : 2020.06.30

Abstract

This study aimed to compare the organic carbon stocks of Cryptomeria japonica and Chamaecyparis obtusa stands established under a similar-site environmental condition in South Korea. C. japonica and C. obtusa stands adjacent to each other from 13 representative regions were chosen to evaluate the carbon stocks of tree biomass, forest floor, and mineral soils. Mean stand ages were 45 years for C. japonica and 43 years for C. obtusa, respectively. Tree density was significantly lower in C. japonica (989 tree ha-1) than in C. obtusa (1,223 tree ha-1) stands, whereas diameter at breast height and dominant tree height values were significantly higher in C. japonica (27.4 cm and 20.4 m, respectively), compared with C. obtusa (23.9 cm and 17.9 m, respectively) stands. The total carbon stocks of tree biomass were linearly related with stand basal area (C. japonica: r2 = 0.82; C. obtusa: r2= 0.92; P< 0.05), whereas stand density and site index were not correlated with the carbon stocks of tree biomass (P > 0.05). The carbon stocks of aboveground tree biomass were significantly higher in C. obtusa (117.7 Mg C ha-1), compared with C. japonica (95.5 Mg C ha-1) stands, whereas carbon concentration and stocks of the forest floor and mineral soil layers were insignificantly different between the C. japonica and C. obtusa stands. The results indicated that trees in C. obtusa stands sequestrated more carbon dioxide, compared with C. japonica stands, whereas carbon stocks in the forest floor and mineral soil layers were unaffected by stand development processes of the different tree species.

본 연구는 우리나라 남부지역의 주요 조림 수종으로 유사한 입지환경에 조성되는 삼나무와 편백 임분의 유기 탄소량을 비교하기 위해 수행하였다. 삼나무와 편백이 서로 인접한 지역에 조성된 대표적 조림지 13개 지역을 선정하고, 임목, 임상, 토양 10 cm 깊이의 탄소량을 조사하였다. 조사지의 평균 임분 연령은 삼나무 45년, 편백 43년이었으며, 임분밀도는 삼나무가 989본 ha-1으로 편백 1,223본 ha-1에 비해 유의적으로 낮았다. 평균 흉고직경과 우세목의 평균 수고는 삼나무가 27.4 cm와 20.4 m, 편백은 23.9 cm와 17.9 m로 삼나무가 유의적으로 큰 것으로 나타났다. 두 임분의 임목 바이오매스 탄소량은 흉고단면적과 유의적인 선형회귀 관계(삼나무: r2 = 0.82; 편백: r2 = 0.92; P < 0.05)가 있었으나, 임분밀도 및 지위지수와는 회귀식에 유의성이 없었다(P > 0.05). 지상부 임목 바이오매스 탄소량은 삼나무 95.5 Mg C ha-1, 편백 117.7 Mg C ha-1로 편백 임분이 유의적으로 크게 나타났으나(P < 0.05), 임상 및 토양층의 유기 탄소 농도 및 탄소량은 유의적인 차이가 없었다. 본 연구 결과에 따르면 유사한 입지환경에 조성된 두 수종의 임목 바이오매스 탄소량은 편백 임분이 삼나무 임분에 비해 큰 것으로 나타났으나, 임상이나 토양 탄소량은 수종의 영향이 크지 않았다.

Keywords

References

  1. Binkley, D. and Giardina, C. 1998. Why do tree species affect soils? The warp and woof of tree-soil interactions. Biogeochemistry 42: 89-106. https://doi.org/10.1023/A:1005948126251
  2. Binkley, D. and Fisher, R.F. 2020. Ecology and management of forest soils. 5th Ed. John Wiley & Sons Ltd. UK. pp. 440.
  3. Cheng, C.H., Hung, C.Y., Chen, C.P. and Pei, C.W. 2013. Biomass carbon accumulation in aging Japanese cedar plantations in Xitou, central Taiwan. Botanical Studies 54(1): 60. https://doi.org/10.1186/1999-3110-54-60
  4. Chung, Y.G. and Lee, K.S. 2001. Biomass estimation of 40 years old Chamaecyparis obutusa stands. Korean Journal of Forest Measurements 4(2): 11-17.
  5. Fang, J., Kato, T., Guo, Z., Yang, Y., Hu, H., Shen, H., Zhao, X., Kishimotomo, A.W., Tang, Y. and Houghton, R.A. 2014. Evidence for environmentally enhanced forest growth. PNAS 111(11): 9527-9532. https://doi.org/10.1073/pnas.1402333111
  6. Fukuda, M., Iehara, T. and Matsumoto, M. 2003. Carbon stock estimates for Sugi and Hinoki forests in Japan. Forest Ecology and Management 184(1-3): 1-16. https://doi.org/10.1016/S0378-1127(03)00146-4
  7. Garcia Villacorta, A.M., Martin, T.A., Jokela, E.J., Cropper Jr, W.P. and Gezan, S.A. 2015. Variation in biomass distribution and nutrient content in loblolly pine (Pinus taeda L.) clones having contrasting crown architecture and growth efficiency. Forest Ecology and Management 342: 84-92. https://doi.org/10.1016/j.foreco.2015.01.012
  8. Gwon, J.H., Seo, H., Lee, K.S., You, B.O., Park, Y.B., Jeong, J. and Kim, C. 2014. Allometric equations and biomass expansion factors by stand density in Cryptomeria japonica plantations. Journal of Korean Forest Society 103(2): 175-181. https://doi.org/10.14578/jkfs.2014.103.2.175
  9. Herrero, C., Turrion, M.B., Pando, V. and Bravo, F. 2016. Carbon content of forest floor and mineral soil in Mediterranean Pinus spp. and oak stands in acid soils in Northern Spain. Forest Systems 25(2): e065. https://doi.org/10.5424/fs/2016252-09149
  10. Hosoda, K. and Iehara, T. 2010. Aboveground biomass equations for individual trees of Cryptomeria japonica, Chamaecyparis obtusa and Larix kaempferi in Japan. Journal of Forest Research 15: 299-306. https://doi.org/10.1007/s10310-010-0192-y
  11. Ichikawa, T., Takahashi, T. and Asano, Y. 2006. Comparison of changes in organic matter dynamics due to stand age between artificial Japanese cedar (Cryptomeria japonica D. Don) forests and Japanese cypress (Chamaecyparis obtusa Sieb. et Zucc.) forests. Journal of the Japan Forest Society 88(6): 525-533. https://doi.org/10.4005/jjfs.88.525
  12. Intergovernmental Panel on Climate Change (IPCC). 2006. Guidelines for national greenhouse gas inventories. Eggelston, H.S., Buendia, L., Miwa, K., Ngara, T. and Tanabe, K. (Eds.). IPCC/OECD/IEA/IGES, Hayama, Japan.
  13. Ishihara, M.I., Utsugi, H., Tanouchi, H., Aiba, M., Kurokawa, H., Onoda, Y., Nagano, M., Umehara, T., Ando, M., Miyata, R. and Hiura, T. 2015. Efficacy of generic allometric equations for estimating biomass: a test in Japanese natural forests. Ecological Applications 25(5): 1433-1446. https://doi.org/10.1890/14-0175.1
  14. Jung, S.C., Lumbres, R.I.C., Won, H.K. and Seo, Y.O. 2014. Allometric equations, stem density and biomass expansion factors for Cryptomeria japonica in Mount Halla, Jeju Island, Korea. Journal of Ecology and Environment 37(4): 177-184. https://doi.org/10.5141/ecoenv.2014.021
  15. Kim, C., Lee, J.S. and Cho, K.J. 1987. Biomass and net production of Cryptomeria japonica and Chamaecyparis obtusa in Changsong district, Chonnam. Journal of Korea Forest Energy 7(1): 1-10.
  16. Kim, H.S., Park, G.S., Lee, S.M., Lee, S.J., Lee, H.G., Park, H.W., Park, D.Y., Lee, C.H., Kim, J.H. and Lee, J.K. 2016. A study on the vegetation structure of the Geumsan in Namhae-gun of Korea. Korean Journal of Environmental Ecology 30(2): 214-227. https://doi.org/10.13047/KJEE.2016.30.2.214
  17. Korea Forest Research Institute. 2014. Forest resources and distribution of major tree species in Southern Korea. pp. 22.
  18. Korea Meteorological Administration. 2017. Korea climatological reports. pp. 322.
  19. Lee, S.J., Yim, J.S., Son, Y.M., Son, Y. and Kim, R. 2018. Estimation of forest carbon stocks for national greenhouse gas inventory reporting in south Korea. Forests 9(10): 625. https://doi.org/10.3390/f9100625
  20. Noguchi, K., Konôpka, B., Satomura, T., Kaneko, S. and Takahashi, M. 2007. Biomass and production of fine roots in Japanese forests. Journal of Forest Research 12(2): 83-95. https://doi.org/10.1007/s10310-006-0262-3
  21. Ono, K., Hiradate, S., Morita, S., Ohse, K. and Hirai, K. 2011. Humification processes of needle litters on forest floors in Japanese cedar (Cryptomeria japonica) and Hinoki cypress (Chamaecyparis obtusa) plantations in Japan. Plant and Soil 338: 171-181. https://doi.org/10.1007/s11104-010-0397-z
  22. SAS Institute Inc. 2003. SAS/STAT statistical software. Version 9.1 SAS Publishing Cary, NC.
  23. Sasaki, N. and Kim, S. 2009. Biomass carbon sinks in Japanese forests: 1966-2012. Forestry 82(1): 105-115. https://doi.org/10.1093/forestry/cpn049
  24. Seo, Y.O. and Lee, Y.J. 2013. Estimation of above- and belowground biomass with consideration of age classes for Cryptomeria japonica stands. Journal of Agriculture & Life Science 47(2): 17-23.
  25. Shutou, K. and Nakane, K. 2004. Change in soil carbon cycling for stand development of Japanese cedar (Cryptomeria japonica) plantations following clear-cutting. Ecological Research 19(2): 233-244. https://doi.org/10.1111/j.1440-1703.2003.00628.x
  26. Son, Y.M., Kang, J.T., Hwang, J.S., Park, H. and Lee, K.S. 2015. Assessment and prediction of stand yield in Cryptomeria japonica stands. Journal of Korean Forest Society 104(3): 421-426. https://doi.org/10.14578/jkfs.2015.104.3.421
  27. Takahashi, M., Ishizuka, S., Ugawa, S., Sakai, Y., Sakai, H., Ono, K., Hashimoto, S., Matsuura, Y. and Morisada, K. 2010. Carbon stock in litter, deadwood and soil in Japan's forest sector and its comparison with carbon stock in agricultural soils. Soil Science and Plant Nutrition 56(1): 19-30. https://doi.org/10.1111/j.1747-0765.2009.00425.x
  28. Tanikawa, T., Sobue, A. and Hirano, Y. 2014. Acidification processes in soils with different acid buffering capacity in Cryptomeria japonica and Chamaecyparis obtusa forests over two decades. Forest Ecology and Management 334: 284-292. https://doi.org/10.1016/j.foreco.2014.08.036
  29. Vesterdal, L., Schmidt, I.K, Callesen, I., Nilsson, L.O. and Gundersen, P. 2008. Carbon and nitrogen in forest floor and mineral soil under six common European tree species. Forest Ecology and Management 255: 35-48. https://doi.org/10.1016/j.foreco.2007.08.015
  30. Vesterdal, L., Clake, N., Sigurdsson, B.D. and Gudersen, P. 2013. Do tree species influence soil carbon stocks in temperate and boreal forests? Forest Ecology and Management 309: 4-18. https://doi.org/10.1016/j.foreco.2013.01.017

Cited by

  1. 소나무재선충병 피해지에 식재된 편백의 낙엽·낙지에 의한 탄소 및 질소 유입량 vol.110, pp.1, 2020, https://doi.org/10.14578/jkfs.2021.110.1.43