DOI QR코드

DOI QR Code

Expression of HSP70 mRNA and Protein based on the Thermal Stress in the Primary Hepatocyte Culture of Walleye Pollock (Gadus chalcogrammus)

명태(Gadus chalcogrammus)의 일차 간세포 배양에서 온도 스트레스에 따른 HSP70 mRNA와 단백질 발현

  • Kim, So-Sun (Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University) ;
  • Lee, Chang-Ju (Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University) ;
  • Park, Jang-Su (Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University)
  • Received : 2020.03.30
  • Accepted : 2020.05.07
  • Published : 2020.06.30

Abstract

Water temperature is one of the most important factors of fish survival, affecting the habitat, migration route, development, and reproduction. This experiment studied the induction level of heat shock protein (HSP70) mRNA and protein in a walleye pollock (Gadus chalcogrammus) primary hepatocyte culture based on different temperatures. Hepatocytes were attached at 7.5℃ for 24 hours. Hsp70 induction levels were then measured for 48 hours at 5, 8, 11, 14, and 17℃. The induction level was lowest at 5℃ and generally increased with temperature until 14℃. The induction level was reduced at 17℃, indicating that 14℃ is the highest tolerable temperature for hepatocytes. These data indicate that primary hepatocyte cell culture is under no stress at 5 and 8℃. Temperatures greater than 11℃ induce stress, showing similar induction patterns in both mRNA and protein in hepatocytes. The results suggest that 14℃ is the maximum internal defense temperature of walleye pollock survival.

Keywords

References

  1. Airaksinen, S., Rabergh, C. M. I., Sistonen, L., Nikinmaa, M., 1998, Effects of heat shock and hypoxia on protein synthesis in rainbow trout (Oncorhynchus mykiss) cells, Journal of Experimental Biology, 201, 2543-2551. https://doi.org/10.1242/jeb.201.17.2543
  2. Bakkala, R. G., 1993, Structure and historical changes in the ground fish complex of the Eastern Bering Sea, U.S. Department of Commerce, NOAA Technical Report, 114, 91.
  3. Brierley, A. S., Kingsford, M. J., 2009, Impacts of climate change on marine organisms and ecosystems, Current biology, 19, 602-614. https://doi.org/10.1016/j.cub.2009.02.062
  4. Carr, S. M., Marshall, H. D., 2008, Phylogeographic analysis of complete mtDNA genomes from Walleye Pollock (Gadus chalcogrammus Pallas, 1811) shows an ancient origin of genetic biodiversity, Mitochondrial DNA, 19, 490-496.
  5. Chang, Z., Lu, M., Kim, S. S., Park, J. S., 2014, Potential role of HSP90 in mediating the interactions between estrogen receptor (ER) and aryl hydrocarbon receptor (AhR) signaling pathways, Toxicology Letters, 226, 6-13. https://doi.org/10.1016/j.toxlet.2014.01.032
  6. Dietz, T. J., 1994, Acclimation of the threshold induction temperatures for 70-kDa and 90-kDa heat shock proteins in the fish Gillichthys mirabilis, Journal of Experimental Biology, 188, 333-338. https://doi.org/10.1242/jeb.188.1.333
  7. Dietz, T. J., Somero, G. N., 1993, Species- and tissue-specific synthesis patterns for heat-shock proteins HSP70 and HSP90 in several marine teleost fishes, Physiological Zoology, 66, 863-880. https://doi.org/10.1086/physzool.66.6.30163744
  8. Doney, S. C., Ruckelshaus, M., Emmett, J., Barry, J. P., Chan, F., English, C. A., Galindo, H. M., Grebmeier, J. M., Hollowed, A. B., Knowlton, N., Polovina, J., Rabalais, N. N., Sydeman, W. J., Talley, L. D., 2012, Climate change impacts on marine ecosystems, Annual Review of Marine Science, 4, 11-37. https://doi.org/10.1146/annurev-marine-041911-111611
  9. Dong, Y., Dong, S., Ji, T., 2008, Effect of different thermal regimes on growth and physiological performance of the sea cucumber Apostichopus japonicus selenka. Aquaculture, 275(1-4), 329-334. https://doi.org/10.1016/j.aquaculture.2007.12.006
  10. Dyer, S. D., Dickson, K. L., Zimmerman, E. G., 1991, Tissue-specific patterns of synthesis of heat-shock proteins and thermal tolerance of the fathead minnow (Pimephales promelas), Canadian Journal of Zoology, 69, 2021-2027. https://doi.org/10.1139/z91-282
  11. FAO, 2018, Fish Stat. Theragra chalcogramma.
  12. Feder, M. E., Hofmann, G. E., 1999, Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology, Annual Review of Physiology, 61, 243-282. https://doi.org/10.1146/annurev.physiol.61.1.243
  13. Gribanov, D. V., Timofeyev, M. A., 2011, The role of the heat shock proteins (HSP70 and sHSP) in the thermotolerance of freshwater amphipods from contrasting habitats, Journal of Thermal Biology, 36, 142-149. https://doi.org/10.1016/j.jtherbio.2010.12.008
  14. Guerriero, G., Finizio, D., Ciarcia, A. G., 2002, Stress-induced changes in plasma antioxidants of aquacultured sea bass, Dicentrarchus labrax, Comparative Biochemistry and Physiology, 132, 205-11. https://doi.org/10.1016/S1095-6433(01)00549-9
  15. Karl, I., Sorensen, J. G., Loeschcke, V., Fischer, K., 2009, HSP70 expression in the copper butterfly Lycaena tityrus across altitudes and temperatures. Journal of Evolutionary Biology, 22, 172-178. https://doi.org/10.1111/j.1420-9101.2008.01630.x
  16. Koban, M., Yup, A. A., Agellon, L. B., Powers, D. A., 1991, Molecular adaptation to environmental temperature: heat shock response of the eurythermal teleost Fundulus heteroclitus, Molecular Marine Biology and Biotechnology, 1, 1-17.
  17. Lee, Y., Kim, D., 2010, Measuring surface water temperature effects on the walleye Pollock fishery production using a Translog cost function approach. Environmental and Resource Economics, 19 (4), 897-916.
  18. Livak, K. J., Schmittgen, T. D., 2001, Analysis of relative gene expression data using realtime quantitative PCR and the $2^{{\Delta}{\Delta}C(T)}$ Method, Methods, 25(4): 402-408. https://doi.org/10.1006/meth.2001.1262
  19. Lushchak, V. I., Bagnyukova, T. V., 2006, Temperature increase results in oxidative stress in goldfish tissues. 2. Antioxidant and associated enzymes, Comparative Biochemistry and Physiology Part C, 143 : 36-41. https://doi.org/10.1016/j.cbpc.2005.11.018
  20. Mazur, C. F., 1996, The heat shock protein response and physiological stress in aquatic organisms, Doctoral thesis, University of British Columbia.
  21. Nakatani, T., Maeda, T, 1984, Thermal effect on the development of walleye pollock eggs and their upward speed to the surface, Bulletin of the Japanese Society of Scientific Fisheries, 50, 937-942. https://doi.org/10.2331/suisan.50.937
  22. Nakatani, T., Sugimoto, K., Takatsu, T., Takahashi, T., 2003, Environmental factors in Funka Bay, Hokkaido, affecting the year class strength of walleye pollock, Theragra chalcogramma, Bulletin of the Japanese Society of Fisheries Oceanography, 67, 23-28.
  23. Page, L. M., Espinosa-Perez, H., Findley, L. T., Gilbert, C. R., Lea, R. N., Mandrak, N. E., Mayden, R. L., Nelson, J. S., 2013, Common and Scientific names of Fishes from the United States, 7th edition. 34 American Fisheries Society, Canada, Mexico Special Publication, 243.
  24. Parihar, M. S., Dubey, A. K., Faveri, T., Prakash, P., 1996, Changes in lipid peroxidation, superoxide dismutase activity, ascorbic acid and phospholipids content in liver of freshwater catfish Heteropneustes fossilis exposed to elevated temperature, Journal of Thermal Biology, 21, 323-330. https://doi.org/10.1016/S0306-4565(96)00016-2
  25. Parsell, D. A., Lindquist, S., 1993, The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins, Annual Review of Genetics, 27, 437-496. https://doi.org/10.1146/annurev.ge.27.120193.002253
  26. Perry, A. L., Low, P. J., Ellis, J. R., Reynolds, J. D., 2005, Climate change and distribution shifts in marine fishes, Science, 308, 1912-1915. https://doi.org/10.1126/science.1111322
  27. Piscopo, M., Notariale, R., Rabbito, D., Ausio, J., Olanrewaju, O. S., Guerriero, G., 2018, Mytilus galloprovincialis (Lamarck, 1819) spermatozoa: hsp70 expression and protamine-like protein property studies, Environmental Science and Pollution Research, 25(13), 12957-12966. https://doi.org/10.1007/s11356-018-1570-9
  28. Podrabsky, J. E., Somero, G. N., 2004, Changes in gene expression associated with acclimation to constant temperatures and fluctuating daily temperatures in an annual killifish Austrofundulus limnaeus, Journal of Experimental Biology, 207, 2237-2254. https://doi.org/10.1242/jeb.01016
  29. Quinn, N. L., McGowan, C. R., Cooper, G. A., Koop, B. F., Davidson, W. S., 2011, Identification of genes associated with heat tolerance in Arctic charr exposed to acute thermal stress, Physiological Genomics, 43, 685-696. https://doi.org/10.1152/physiolgenomics.00008.2011
  30. Reddy, D. V., Nagbhushanam, P., Ramesh, G., 2013, Turnover time of Tural and Rajvadi hot spring waters, Maharashtra, India, Current Science, 104(10), 1419-1424.
  31. Scalici, M., Traversetti, L., Spani, F., Malafoglia, V., Colamartino, M., Persichini, T., Cappello, S., Mancini, G., Guerriero, G., Colasanti, M., 2017, Shell fluctuating asymmetry in the seadwelling benthic bivalve Mytilus galloprovincialis (Lamarck, 1819) as morphological markers to detect environmental chemical contamination, Ecotoxicology, 26, 396. https://doi.org/10.1007/s10646-017-1772-9
  32. Shatilina, Z. M., Riss, H. W., Protopopova, M. V., Trippe, M., Meyer, E. I., Pavlichenko, V. V., Bedulina, D. S., Axenov-Gribanov, D. V., Timofeyev, M. A., 2011, The role of the heat shock proteins (HSP70 and sHSP) in the thermotolerance of freshwater amphipods from contrasting habitats, Journal of Thermal Biology, 36, 142-149. https://doi.org/10.1016/j.jtherbio.2010.12.008
  33. Somero, G. N., 2002, Thermal physiology and vertical zonation of intertidal animals: optima, limits and costs of living, Integrative and Comparative Biology, 42(4): 780-789. https://doi.org/10.1093/icb/42.4.780
  34. Somero, G. N., 2010, The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine 'winners' and 'losers', Journal of Experimental Biology, 213, 912-920. https://doi.org/10.1242/jeb.037473
  35. Sorensen, J. G., Kristensen, T. N., Loeschcke, V., 2003, The evolutionary and ecological role of heat shock proteins, Ecology Letters, 6, 1025-1037. https://doi.org/10.1046/j.1461-0248.2003.00528.x
  36. Tomanek, L., 2002, The heat-shock response: its variation, regulation and ecological importance in intertidal gastropods (genus Tegula), Integrative and Comparative Biology, 42, 797-807. https://doi.org/10.1093/icb/42.4.797
  37. Wood, L. A., Brown, I. A., Youson, J. H., 1999, Tissue and developmental variations in the heat shock response of sea lampreys (Petromyzon marinus): effects of an increase in acclimation temperature, Comparative Biochemistry and Physiology A, 123, 35-42. https://doi.org/10.1016/S1095-6433(99)00035-5
  38. Yoo, H. K., Byun, S. G., Yamamoto, J., Sakurai, Y., 2015, The Effect of Warmer Water Temperature of Walleye Pollock (Gadus chalcogrammus) Larvae, Journal of the Korean Society of Marine Environment & Safety, 21(4), 339-346. https://doi.org/10.7837/kosomes.2015.21.4.339