References
- Airaksinen, S., Rabergh, C. M. I., Sistonen, L., Nikinmaa, M., 1998, Effects of heat shock and hypoxia on protein synthesis in rainbow trout (Oncorhynchus mykiss) cells, Journal of Experimental Biology, 201, 2543-2551. https://doi.org/10.1242/jeb.201.17.2543
- Bakkala, R. G., 1993, Structure and historical changes in the ground fish complex of the Eastern Bering Sea, U.S. Department of Commerce, NOAA Technical Report, 114, 91.
- Brierley, A. S., Kingsford, M. J., 2009, Impacts of climate change on marine organisms and ecosystems, Current biology, 19, 602-614. https://doi.org/10.1016/j.cub.2009.02.062
- Carr, S. M., Marshall, H. D., 2008, Phylogeographic analysis of complete mtDNA genomes from Walleye Pollock (Gadus chalcogrammus Pallas, 1811) shows an ancient origin of genetic biodiversity, Mitochondrial DNA, 19, 490-496.
- Chang, Z., Lu, M., Kim, S. S., Park, J. S., 2014, Potential role of HSP90 in mediating the interactions between estrogen receptor (ER) and aryl hydrocarbon receptor (AhR) signaling pathways, Toxicology Letters, 226, 6-13. https://doi.org/10.1016/j.toxlet.2014.01.032
- Dietz, T. J., 1994, Acclimation of the threshold induction temperatures for 70-kDa and 90-kDa heat shock proteins in the fish Gillichthys mirabilis, Journal of Experimental Biology, 188, 333-338. https://doi.org/10.1242/jeb.188.1.333
- Dietz, T. J., Somero, G. N., 1993, Species- and tissue-specific synthesis patterns for heat-shock proteins HSP70 and HSP90 in several marine teleost fishes, Physiological Zoology, 66, 863-880. https://doi.org/10.1086/physzool.66.6.30163744
- Doney, S. C., Ruckelshaus, M., Emmett, J., Barry, J. P., Chan, F., English, C. A., Galindo, H. M., Grebmeier, J. M., Hollowed, A. B., Knowlton, N., Polovina, J., Rabalais, N. N., Sydeman, W. J., Talley, L. D., 2012, Climate change impacts on marine ecosystems, Annual Review of Marine Science, 4, 11-37. https://doi.org/10.1146/annurev-marine-041911-111611
- Dong, Y., Dong, S., Ji, T., 2008, Effect of different thermal regimes on growth and physiological performance of the sea cucumber Apostichopus japonicus selenka. Aquaculture, 275(1-4), 329-334. https://doi.org/10.1016/j.aquaculture.2007.12.006
- Dyer, S. D., Dickson, K. L., Zimmerman, E. G., 1991, Tissue-specific patterns of synthesis of heat-shock proteins and thermal tolerance of the fathead minnow (Pimephales promelas), Canadian Journal of Zoology, 69, 2021-2027. https://doi.org/10.1139/z91-282
- FAO, 2018, Fish Stat. Theragra chalcogramma.
- Feder, M. E., Hofmann, G. E., 1999, Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology, Annual Review of Physiology, 61, 243-282. https://doi.org/10.1146/annurev.physiol.61.1.243
- Gribanov, D. V., Timofeyev, M. A., 2011, The role of the heat shock proteins (HSP70 and sHSP) in the thermotolerance of freshwater amphipods from contrasting habitats, Journal of Thermal Biology, 36, 142-149. https://doi.org/10.1016/j.jtherbio.2010.12.008
- Guerriero, G., Finizio, D., Ciarcia, A. G., 2002, Stress-induced changes in plasma antioxidants of aquacultured sea bass, Dicentrarchus labrax, Comparative Biochemistry and Physiology, 132, 205-11. https://doi.org/10.1016/S1095-6433(01)00549-9
- Karl, I., Sorensen, J. G., Loeschcke, V., Fischer, K., 2009, HSP70 expression in the copper butterfly Lycaena tityrus across altitudes and temperatures. Journal of Evolutionary Biology, 22, 172-178. https://doi.org/10.1111/j.1420-9101.2008.01630.x
- Koban, M., Yup, A. A., Agellon, L. B., Powers, D. A., 1991, Molecular adaptation to environmental temperature: heat shock response of the eurythermal teleost Fundulus heteroclitus, Molecular Marine Biology and Biotechnology, 1, 1-17.
- Lee, Y., Kim, D., 2010, Measuring surface water temperature effects on the walleye Pollock fishery production using a Translog cost function approach. Environmental and Resource Economics, 19 (4), 897-916.
-
Livak, K. J., Schmittgen, T. D., 2001, Analysis of relative gene expression data using realtime quantitative PCR and the
$2^{{\Delta}{\Delta}C(T)}$ Method, Methods, 25(4): 402-408. https://doi.org/10.1006/meth.2001.1262 - Lushchak, V. I., Bagnyukova, T. V., 2006, Temperature increase results in oxidative stress in goldfish tissues. 2. Antioxidant and associated enzymes, Comparative Biochemistry and Physiology Part C, 143 : 36-41. https://doi.org/10.1016/j.cbpc.2005.11.018
- Mazur, C. F., 1996, The heat shock protein response and physiological stress in aquatic organisms, Doctoral thesis, University of British Columbia.
- Nakatani, T., Maeda, T, 1984, Thermal effect on the development of walleye pollock eggs and their upward speed to the surface, Bulletin of the Japanese Society of Scientific Fisheries, 50, 937-942. https://doi.org/10.2331/suisan.50.937
- Nakatani, T., Sugimoto, K., Takatsu, T., Takahashi, T., 2003, Environmental factors in Funka Bay, Hokkaido, affecting the year class strength of walleye pollock, Theragra chalcogramma, Bulletin of the Japanese Society of Fisheries Oceanography, 67, 23-28.
- Page, L. M., Espinosa-Perez, H., Findley, L. T., Gilbert, C. R., Lea, R. N., Mandrak, N. E., Mayden, R. L., Nelson, J. S., 2013, Common and Scientific names of Fishes from the United States, 7th edition. 34 American Fisheries Society, Canada, Mexico Special Publication, 243.
- Parihar, M. S., Dubey, A. K., Faveri, T., Prakash, P., 1996, Changes in lipid peroxidation, superoxide dismutase activity, ascorbic acid and phospholipids content in liver of freshwater catfish Heteropneustes fossilis exposed to elevated temperature, Journal of Thermal Biology, 21, 323-330. https://doi.org/10.1016/S0306-4565(96)00016-2
- Parsell, D. A., Lindquist, S., 1993, The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins, Annual Review of Genetics, 27, 437-496. https://doi.org/10.1146/annurev.ge.27.120193.002253
- Perry, A. L., Low, P. J., Ellis, J. R., Reynolds, J. D., 2005, Climate change and distribution shifts in marine fishes, Science, 308, 1912-1915. https://doi.org/10.1126/science.1111322
- Piscopo, M., Notariale, R., Rabbito, D., Ausio, J., Olanrewaju, O. S., Guerriero, G., 2018, Mytilus galloprovincialis (Lamarck, 1819) spermatozoa: hsp70 expression and protamine-like protein property studies, Environmental Science and Pollution Research, 25(13), 12957-12966. https://doi.org/10.1007/s11356-018-1570-9
- Podrabsky, J. E., Somero, G. N., 2004, Changes in gene expression associated with acclimation to constant temperatures and fluctuating daily temperatures in an annual killifish Austrofundulus limnaeus, Journal of Experimental Biology, 207, 2237-2254. https://doi.org/10.1242/jeb.01016
- Quinn, N. L., McGowan, C. R., Cooper, G. A., Koop, B. F., Davidson, W. S., 2011, Identification of genes associated with heat tolerance in Arctic charr exposed to acute thermal stress, Physiological Genomics, 43, 685-696. https://doi.org/10.1152/physiolgenomics.00008.2011
- Reddy, D. V., Nagbhushanam, P., Ramesh, G., 2013, Turnover time of Tural and Rajvadi hot spring waters, Maharashtra, India, Current Science, 104(10), 1419-1424.
- Scalici, M., Traversetti, L., Spani, F., Malafoglia, V., Colamartino, M., Persichini, T., Cappello, S., Mancini, G., Guerriero, G., Colasanti, M., 2017, Shell fluctuating asymmetry in the seadwelling benthic bivalve Mytilus galloprovincialis (Lamarck, 1819) as morphological markers to detect environmental chemical contamination, Ecotoxicology, 26, 396. https://doi.org/10.1007/s10646-017-1772-9
- Shatilina, Z. M., Riss, H. W., Protopopova, M. V., Trippe, M., Meyer, E. I., Pavlichenko, V. V., Bedulina, D. S., Axenov-Gribanov, D. V., Timofeyev, M. A., 2011, The role of the heat shock proteins (HSP70 and sHSP) in the thermotolerance of freshwater amphipods from contrasting habitats, Journal of Thermal Biology, 36, 142-149. https://doi.org/10.1016/j.jtherbio.2010.12.008
- Somero, G. N., 2002, Thermal physiology and vertical zonation of intertidal animals: optima, limits and costs of living, Integrative and Comparative Biology, 42(4): 780-789. https://doi.org/10.1093/icb/42.4.780
- Somero, G. N., 2010, The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine 'winners' and 'losers', Journal of Experimental Biology, 213, 912-920. https://doi.org/10.1242/jeb.037473
- Sorensen, J. G., Kristensen, T. N., Loeschcke, V., 2003, The evolutionary and ecological role of heat shock proteins, Ecology Letters, 6, 1025-1037. https://doi.org/10.1046/j.1461-0248.2003.00528.x
- Tomanek, L., 2002, The heat-shock response: its variation, regulation and ecological importance in intertidal gastropods (genus Tegula), Integrative and Comparative Biology, 42, 797-807. https://doi.org/10.1093/icb/42.4.797
- Wood, L. A., Brown, I. A., Youson, J. H., 1999, Tissue and developmental variations in the heat shock response of sea lampreys (Petromyzon marinus): effects of an increase in acclimation temperature, Comparative Biochemistry and Physiology A, 123, 35-42. https://doi.org/10.1016/S1095-6433(99)00035-5
- Yoo, H. K., Byun, S. G., Yamamoto, J., Sakurai, Y., 2015, The Effect of Warmer Water Temperature of Walleye Pollock (Gadus chalcogrammus) Larvae, Journal of the Korean Society of Marine Environment & Safety, 21(4), 339-346. https://doi.org/10.7837/kosomes.2015.21.4.339